| Presentation: |
${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o \mid c^{6}=e^{6}=f^{6}= \!\cdots\! \rangle}$
|
magma:G := PCGroup([21, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 42, 11798852710, 36860602214, 4162403597, 170, 40673649411, 8262420456, 4307241522, 3745569244, 17573717725, 328487716, 5770013827, 298, 16286719685, 22957572986, 15038037551, 7181133692, 9180010062, 18923165379, 6218273802, 7381931262, 2922947208, 5144376, 426, 36656505991, 7674597532, 15054238129, 10489959718, 2269925371, 2066348704, 171950842, 623631968, 9763141277, 17852909054, 1563703289, 2183192768, 518449058, 327746000, 554, 105358589289, 63754387230, 17655659331, 12181702752, 3396572013, 751572495, 33272976, 89876195650, 7094113519, 6716156884, 10163640637, 3542266822, 654760375, 380369818, 201873136, 60625204, 682, 131889195659, 58329548960, 26079245189, 4239273098, 6217767455, 591802985, 40669934, 13230179, 145330645836, 81923770689, 9606834018, 3023407371, 4155828864, 1083242298, 430437075, 64491516, 10748778, 113356164109, 44840428450, 4821477751, 21573197932, 2286241, 5334475, 486186784, 77189293, 11579119, 157963856414, 11022480035, 43009717016, 6293836157, 301281218, 748304060, 174828941, 8369102, 18753670671, 11710282788, 40068919353, 24796171086, 329204835, 689762445, 688782690, 9144759, 8872641, 152903842576, 49918607461, 6529227322, 7757621503, 2098680292, 1192999894, 368518411, 19779412, 4858282, 121970354705, 48093284774, 40950717755, 25955735984, 6904481573, 456330815, 396809444, 191791337, 30312047, 64336011282, 27141754791, 40712632188, 3392719425, 753937734, 565453368, 94242369, 20942898, 187293980179, 4761711400, 4761711421, 10713850642, 66135025, 297607126, 11022709, 222254347412, 89996344745, 14999390846, 1249949315, 7499695496, 208325018, 34720979, 208325060, 34721042]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o := Explode([G.1, G.3, G.5, G.7, G.9, G.11, G.13, G.14, G.15, G.16, G.17, G.18, G.19, G.20, G.21]); AssignNames(~G, ["a", "a2", "b", "b2", "c", "c2", "d", "d2", "e", "e2", "f", "f2", "g", "h", "i", "j", "k", "l", "m", "n", "o"]);
gap:G := PcGroupCode(5315987058783911611158755203589451603148039118950344317403861647634329964970490455986027422647122631019192868113755951040130305024223653845777175665465562611242119434885974627707281211196065931421688771198854669684260936640187672795795023780667352294710836404233810992575948046732679161844705623065545767018815827554231935871954111754856972632065956832145004309975074609202903208160867168212194082651782571668593590230079437944314930222707692860927738011997803364369442989626914850658962659851316423982671967800466342207478221470142637297646243020313936836641444635696326344508919887941234526226854599455696905773828747415242971216157176351395434222382921561294076928806513132552082138031757886537405797216155020390321423237290302386102263005976613961092342996258559269095208887832381447084187044593429419869337067232343076693360417139285664074779369149391304880139494376721191266463895389498658215270751254424157539682594055656372981929925048445428949960148849318938389757619853696222833036017707135416786763357109368027058209590651183652262584905217448561460668637705204627937430964016277875370556438211562131035245069710617185042081656535621295888884164538506567621480993930073247429961052742070472340964580577871213156014353735014028327298925559263652757103541816605493801335720304622711563771862756351,612220032); a := G.1; b := G.3; c := G.5; d := G.7; e := G.9; f := G.11; g := G.13; h := G.14; i := G.15; j := G.16; k := G.17; l := G.18; m := G.19; n := G.20; o := G.21;
sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(5315987058783911611158755203589451603148039118950344317403861647634329964970490455986027422647122631019192868113755951040130305024223653845777175665465562611242119434885974627707281211196065931421688771198854669684260936640187672795795023780667352294710836404233810992575948046732679161844705623065545767018815827554231935871954111754856972632065956832145004309975074609202903208160867168212194082651782571668593590230079437944314930222707692860927738011997803364369442989626914850658962659851316423982671967800466342207478221470142637297646243020313936836641444635696326344508919887941234526226854599455696905773828747415242971216157176351395434222382921561294076928806513132552082138031757886537405797216155020390321423237290302386102263005976613961092342996258559269095208887832381447084187044593429419869337067232343076693360417139285664074779369149391304880139494376721191266463895389498658215270751254424157539682594055656372981929925048445428949960148849318938389757619853696222833036017707135416786763357109368027058209590651183652262584905217448561460668637705204627937430964016277875370556438211562131035245069710617185042081656535621295888884164538506567621480993930073247429961052742070472340964580577871213156014353735014028327298925559263652757103541816605493801335720304622711563771862756351,612220032)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.11; g = G.13; h = G.14; i = G.15; j = G.16; k = G.17; l = G.18; m = G.19; n = G.20; o = G.21;
sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(5315987058783911611158755203589451603148039118950344317403861647634329964970490455986027422647122631019192868113755951040130305024223653845777175665465562611242119434885974627707281211196065931421688771198854669684260936640187672795795023780667352294710836404233810992575948046732679161844705623065545767018815827554231935871954111754856972632065956832145004309975074609202903208160867168212194082651782571668593590230079437944314930222707692860927738011997803364369442989626914850658962659851316423982671967800466342207478221470142637297646243020313936836641444635696326344508919887941234526226854599455696905773828747415242971216157176351395434222382921561294076928806513132552082138031757886537405797216155020390321423237290302386102263005976613961092342996258559269095208887832381447084187044593429419869337067232343076693360417139285664074779369149391304880139494376721191266463895389498658215270751254424157539682594055656372981929925048445428949960148849318938389757619853696222833036017707135416786763357109368027058209590651183652262584905217448561460668637705204627937430964016277875370556438211562131035245069710617185042081656535621295888884164538506567621480993930073247429961052742070472340964580577871213156014353735014028327298925559263652757103541816605493801335720304622711563771862756351,612220032)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.11; g = G.13; h = G.14; i = G.15; j = G.16; k = G.17; l = G.18; m = G.19; n = G.20; o = G.21;
|
| Permutation group: | Degree $36$
$\langle(1,11,27,36,13,24,2,12,25,34,14,22,3,10,26,35,15,23)(4,18,30,7,21,33,6,17,29,8,19,31,5,16,28,9,20,32) \!\cdots\! \rangle$
|
magma:G := PermutationGroup< 36 | (1,11,27,36,13,24,2,12,25,34,14,22,3,10,26,35,15,23)(4,18,30,7,21,33,6,17,29,8,19,31,5,16,28,9,20,32), (1,35,3,36,2,34)(4,16)(5,18)(6,17)(7,21)(8,20)(9,19)(10,23,11,22,12,24)(13,26,15,27,14,25)(28,33)(29,31)(30,32), (1,4,25,17,35,9,22,20)(2,6,27,18,36,7,24,19)(3,5,26,16,34,8,23,21)(10,30,11,29)(12,28)(13,31,15,33)(14,32) >;
gap:G := Group( (1,11,27,36,13,24,2,12,25,34,14,22,3,10,26,35,15,23)(4,18,30,7,21,33,6,17,29,8,19,31,5,16,28,9,20,32), (1,35,3,36,2,34)(4,16)(5,18)(6,17)(7,21)(8,20)(9,19)(10,23,11,22,12,24)(13,26,15,27,14,25)(28,33)(29,31)(30,32), (1,4,25,17,35,9,22,20)(2,6,27,18,36,7,24,19)(3,5,26,16,34,8,23,21)(10,30,11,29)(12,28)(13,31,15,33)(14,32) );
sage:G = PermutationGroup(['(1,11,27,36,13,24,2,12,25,34,14,22,3,10,26,35,15,23)(4,18,30,7,21,33,6,17,29,8,19,31,5,16,28,9,20,32)', '(1,35,3,36,2,34)(4,16)(5,18)(6,17)(7,21)(8,20)(9,19)(10,23,11,22,12,24)(13,26,15,27,14,25)(28,33)(29,31)(30,32)', '(1,4,25,17,35,9,22,20)(2,6,27,18,36,7,24,19)(3,5,26,16,34,8,23,21)(10,30,11,29)(12,28)(13,31,15,33)(14,32)'])
|
| Transitive group: |
36T89449 |
|
|
|
more information |
| Direct product: |
not computed |
| Semidirect product: |
not computed |
| Trans. wreath product: |
not isomorphic to a non-trivial transitive wreath product |
| Possibly split product: |
$C_3^{12}$ . $(C_2\times A_4^2:C_4)$ |
$(C_3^{12}.C_2)$ . $(A_4^2:C_4)$ |
$(C_3^{10}.C_2^5)$ . $(C_3^4:C_4)$ |
$C_3^{10}$ . $(C_2^5:(C_3^4:C_4))$ |
all 30 |
Elements of the group are displayed as permutations of degree 36.
The $9420 \times 9420$ character table is not available for this group.
The $5443 \times 5443$ rational character table is not available for this group.