Properties

Label 573308928.ke
Order \( 2^{18} \cdot 3^{7} \)
Exponent \( 2 \cdot 3^{3} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 3^{3} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{20} \cdot 3^{8} \cdot 7 \)
$\card{\mathrm{Out}(G)}$ \( 2^{2} \cdot 3 \cdot 7 \)
Perm deg. $36$
Trans deg. $36$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,13,31,3,14,29)(2,16,30,4,15,32)(5,18,24,8,20,21)(6,19,22,7,17,23)(9,28,36,10,27,35)(11,25,34,12,26,33), (1,20,30,6,11,21,35,13,26)(2,17,31,8,12,22,33,16,27,3,19,32,7,9,24,34,14,28,4,18,29,5,10,23,36,15,25) >;
 
Copy content gap:G := Group( (1,13,31,3,14,29)(2,16,30,4,15,32)(5,18,24,8,20,21)(6,19,22,7,17,23)(9,28,36,10,27,35)(11,25,34,12,26,33), (1,20,30,6,11,21,35,13,26)(2,17,31,8,12,22,33,16,27,3,19,32,7,9,24,34,14,28,4,18,29,5,10,23,36,15,25) );
 
Copy content sage:G = PermutationGroup(['(1,13,31,3,14,29)(2,16,30,4,15,32)(5,18,24,8,20,21)(6,19,22,7,17,23)(9,28,36,10,27,35)(11,25,34,12,26,33)', '(1,20,30,6,11,21,35,13,26)(2,17,31,8,12,22,33,16,27,3,19,32,7,9,24,34,14,28,4,18,29,5,10,23,36,15,25)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(797359087801579930790929223022595734696026027596157371929038620580950205461903441344256493840017222216049109284945993321918861964385190355942598342712862905637964311336879510465554770583569114752353929948214567711911846245863924263982958707062641595514569293928430380214113965667074282299731153923176355346206178850310743129062322609711816445860313082610486292902694778419067589481992378704345164197617576912748384366145850969423975733306859712651777850992386197836799628652315512898648252530687721468764692396775519388580209594329230554324012158117545513851577694211855802228438518472221508687180781378723324174838244671660333700379817790514815375307863381284128775245191752029330493271268540179960768343280375148950322918469232775651062812935406949770275894069262496365487555827685476511539861613439868772864901812372449337244836791239372086852175858749416376942067907481984851709403601669597808648626142659553535103626622342220698472603842103662999765800750928773478622501523675328543937870004742538987055234491077854315821467502540608741295186600297190529879583916548045507717183464060017394205667284535371048691431381085793081147455251586968727330470558867153874013079471122035977245198661878013499938509732368770674874474869188504764142843633933912324952836997685025906588003180990790391388797111965101808656101503068992182159643847341922426151666510440795286746701233698411312745672882257920,573308928)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.8; f = G.9; g = G.10; h = G.11; i = G.12; j = G.13; k = G.14; l = G.15; m = G.16; n = G.17; o = G.18; p = G.19; q = G.20; r = G.21; s = G.22; t = G.23; u = G.24; v = G.25;
 

Group information

Description:$C_2^{18}.C_9^2.C_3.C_9$
Order: \(573308928\)\(\medspace = 2^{18} \cdot 3^{7} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(54\)\(\medspace = 2 \cdot 3^{3} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(48157949952\)\(\medspace = 2^{20} \cdot 3^{8} \cdot 7 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 18, $C_3$ x 7
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 6 9 18 27
Elements 1 262143 2810240 46472832 217793664 51166080 254803968 573308928
Conjugacy classes   1 175 12 168 242 798 12 1408
Divisions 1 175 6 84 43 133 2 444
Autjugacy classes 1 9 6 6 28 11 1 62

Minimal presentations

Permutation degree:$36$
Transitive degree:$36$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v \mid c^{9}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([25, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 75, 2648423276, 39334011752, 1787216652, 2262579802, 49305844803, 17080762528, 2675561753, 378, 26317821379, 10318269404, 124204554, 67907617655, 4144705230, 2364808105, 2853088730, 561480405, 580, 28293470106, 20579038231, 4075485806, 3401834706, 774367756, 2323906207, 20625305432, 44566257, 2027381482, 16307, 88617732, 1957, 2106573083, 3366285108, 34281283, 1383550958, 6183, 253422808, 833, 2318220009, 3756354784, 1280610059, 1618420584, 135109, 281538134, 5409, 77648778910, 4214786435, 9480863760, 1736492260, 438185, 310894785, 28210, 739424711, 35407530036, 11819860261, 1220248886, 32511, 205021936, 15461, 54727542687, 38401277887, 11181043637, 1592451987, 122962, 222706712, 60612, 40966884013, 4431190088, 18526951863, 2039045488, 2126363, 396707988, 123013, 45142960514, 39154407789, 4558892689, 3707663714, 779739, 168551014, 202664, 66955442415, 3432132040, 12543660065, 471970890, 7646515, 52772540, 1051365, 121302993841, 44964902291, 20928472266, 4379617441, 10235816, 201967791, 568816, 13593079817, 1399461342, 8300977267, 6889142, 51042267, 21161392, 270139169493, 547807093, 5690683418, 133239018, 121401568, 24436043, 21972243, 12297501019, 7886686544, 21729667569, 3116110594, 71685119, 567243144, 6148669, 184139713820, 60791656320, 15976344895, 2121487295, 217940745, 377796970, 10023470, 77291532471, 20468898496, 23694674921, 548410596, 2174960821, 9073496, 240151071, 15087784972, 82072369172, 33159676797, 5304380272, 3133566122, 992042472, 346388797, 58748506223, 69842719848, 35872777873, 8907116498, 2058469323, 1182713548, 212270573, 112735749399, 37089241924, 39351723824, 620611974, 2626931374, 8336399, 290390799]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v := Explode([G.1, G.3, G.4, G.6, G.8, G.9, G.10, G.11, G.12, G.13, G.14, G.15, G.16, G.17, G.18, G.19, G.20, G.21, G.22, G.23, G.24, G.25]); AssignNames(~G, ["a", "a3", "b", "c", "c3", "d", "d3", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v"]);
 
Copy content gap:G := PcGroupCode(797359087801579930790929223022595734696026027596157371929038620580950205461903441344256493840017222216049109284945993321918861964385190355942598342712862905637964311336879510465554770583569114752353929948214567711911846245863924263982958707062641595514569293928430380214113965667074282299731153923176355346206178850310743129062322609711816445860313082610486292902694778419067589481992378704345164197617576912748384366145850969423975733306859712651777850992386197836799628652315512898648252530687721468764692396775519388580209594329230554324012158117545513851577694211855802228438518472221508687180781378723324174838244671660333700379817790514815375307863381284128775245191752029330493271268540179960768343280375148950322918469232775651062812935406949770275894069262496365487555827685476511539861613439868772864901812372449337244836791239372086852175858749416376942067907481984851709403601669597808648626142659553535103626622342220698472603842103662999765800750928773478622501523675328543937870004742538987055234491077854315821467502540608741295186600297190529879583916548045507717183464060017394205667284535371048691431381085793081147455251586968727330470558867153874013079471122035977245198661878013499938509732368770674874474869188504764142843633933912324952836997685025906588003180990790391388797111965101808656101503068992182159643847341922426151666510440795286746701233698411312745672882257920,573308928); a := G.1; b := G.3; c := G.4; d := G.6; e := G.8; f := G.9; g := G.10; h := G.11; i := G.12; j := G.13; k := G.14; l := G.15; m := G.16; n := G.17; o := G.18; p := G.19; q := G.20; r := G.21; s := G.22; t := G.23; u := G.24; v := G.25;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(797359087801579930790929223022595734696026027596157371929038620580950205461903441344256493840017222216049109284945993321918861964385190355942598342712862905637964311336879510465554770583569114752353929948214567711911846245863924263982958707062641595514569293928430380214113965667074282299731153923176355346206178850310743129062322609711816445860313082610486292902694778419067589481992378704345164197617576912748384366145850969423975733306859712651777850992386197836799628652315512898648252530687721468764692396775519388580209594329230554324012158117545513851577694211855802228438518472221508687180781378723324174838244671660333700379817790514815375307863381284128775245191752029330493271268540179960768343280375148950322918469232775651062812935406949770275894069262496365487555827685476511539861613439868772864901812372449337244836791239372086852175858749416376942067907481984851709403601669597808648626142659553535103626622342220698472603842103662999765800750928773478622501523675328543937870004742538987055234491077854315821467502540608741295186600297190529879583916548045507717183464060017394205667284535371048691431381085793081147455251586968727330470558867153874013079471122035977245198661878013499938509732368770674874474869188504764142843633933912324952836997685025906588003180990790391388797111965101808656101503068992182159643847341922426151666510440795286746701233698411312745672882257920,573308928)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.8; f = G.9; g = G.10; h = G.11; i = G.12; j = G.13; k = G.14; l = G.15; m = G.16; n = G.17; o = G.18; p = G.19; q = G.20; r = G.21; s = G.22; t = G.23; u = G.24; v = G.25;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(797359087801579930790929223022595734696026027596157371929038620580950205461903441344256493840017222216049109284945993321918861964385190355942598342712862905637964311336879510465554770583569114752353929948214567711911846245863924263982958707062641595514569293928430380214113965667074282299731153923176355346206178850310743129062322609711816445860313082610486292902694778419067589481992378704345164197617576912748384366145850969423975733306859712651777850992386197836799628652315512898648252530687721468764692396775519388580209594329230554324012158117545513851577694211855802228438518472221508687180781378723324174838244671660333700379817790514815375307863381284128775245191752029330493271268540179960768343280375148950322918469232775651062812935406949770275894069262496365487555827685476511539861613439868772864901812372449337244836791239372086852175858749416376942067907481984851709403601669597808648626142659553535103626622342220698472603842103662999765800750928773478622501523675328543937870004742538987055234491077854315821467502540608741295186600297190529879583916548045507717183464060017394205667284535371048691431381085793081147455251586968727330470558867153874013079471122035977245198661878013499938509732368770674874474869188504764142843633933912324952836997685025906588003180990790391388797111965101808656101503068992182159643847341922426151666510440795286746701233698411312745672882257920,573308928)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.8; f = G.9; g = G.10; h = G.11; i = G.12; j = G.13; k = G.14; l = G.15; m = G.16; n = G.17; o = G.18; p = G.19; q = G.20; r = G.21; s = G.22; t = G.23; u = G.24; v = G.25;
 
Permutation group:Degree $36$ $\langle(1,13,31,3,14,29)(2,16,30,4,15,32)(5,18,24,8,20,21)(6,19,22,7,17,23)(9,28,36,10,27,35) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,13,31,3,14,29)(2,16,30,4,15,32)(5,18,24,8,20,21)(6,19,22,7,17,23)(9,28,36,10,27,35)(11,25,34,12,26,33), (1,20,30,6,11,21,35,13,26)(2,17,31,8,12,22,33,16,27,3,19,32,7,9,24,34,14,28,4,18,29,5,10,23,36,15,25) >;
 
Copy content gap:G := Group( (1,13,31,3,14,29)(2,16,30,4,15,32)(5,18,24,8,20,21)(6,19,22,7,17,23)(9,28,36,10,27,35)(11,25,34,12,26,33), (1,20,30,6,11,21,35,13,26)(2,17,31,8,12,22,33,16,27,3,19,32,7,9,24,34,14,28,4,18,29,5,10,23,36,15,25) );
 
Copy content sage:G = PermutationGroup(['(1,13,31,3,14,29)(2,16,30,4,15,32)(5,18,24,8,20,21)(6,19,22,7,17,23)(9,28,36,10,27,35)(11,25,34,12,26,33)', '(1,20,30,6,11,21,35,13,26)(2,17,31,8,12,22,33,16,27,3,19,32,7,9,24,34,14,28,4,18,29,5,10,23,36,15,25)'])
 
Transitive group: 36T89197 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not computed
Possibly split product: $(C_2^{18}.C_9^2.C_3)$ . $C_9$ (2) $(C_2^{18}.C_9^2.C_3)$ . $C_9$ $(C_2^{18}.C_3^3.C_3^3)$ . $C_3$ $(C_2^{18}.C_9^2)$ . $(C_9:C_3)$ (2) all 17

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{3} \times C_{9} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 24 normal subgroups (16 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^{18}$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 5 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $1408 \times 1408$ character table is not available for this group.

Rational character table

The $444 \times 444$ rational character table is not available for this group.