Presentation: |
${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v \mid c^{9}= \!\cdots\! \rangle}$
|
magma:G := PCGroup([25, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 75, 2648423276, 39334011752, 1787216652, 2262579802, 49305844803, 17080762528, 2675561753, 378, 26317821379, 10318269404, 124204554, 67907617655, 4144705230, 2364808105, 2853088730, 561480405, 580, 28293470106, 20579038231, 4075485806, 3401834706, 774367756, 2323906207, 20625305432, 44566257, 2027381482, 16307, 88617732, 1957, 2106573083, 3366285108, 34281283, 1383550958, 6183, 253422808, 833, 2318220009, 3756354784, 1280610059, 1618420584, 135109, 281538134, 5409, 77648778910, 4214786435, 9480863760, 1736492260, 438185, 310894785, 28210, 739424711, 35407530036, 11819860261, 1220248886, 32511, 205021936, 15461, 54727542687, 38401277887, 11181043637, 1592451987, 122962, 222706712, 60612, 40966884013, 4431190088, 18526951863, 2039045488, 2126363, 396707988, 123013, 45142960514, 39154407789, 4558892689, 3707663714, 779739, 168551014, 202664, 66955442415, 3432132040, 12543660065, 471970890, 7646515, 52772540, 1051365, 121302993841, 44964902291, 20928472266, 4379617441, 10235816, 201967791, 568816, 13593079817, 1399461342, 8300977267, 6889142, 51042267, 21161392, 270139169493, 547807093, 5690683418, 133239018, 121401568, 24436043, 21972243, 12297501019, 7886686544, 21729667569, 3116110594, 71685119, 567243144, 6148669, 184139713820, 60791656320, 15976344895, 2121487295, 217940745, 377796970, 10023470, 77291532471, 20468898496, 23694674921, 548410596, 2174960821, 9073496, 240151071, 15087784972, 82072369172, 33159676797, 5304380272, 3133566122, 992042472, 346388797, 58748506223, 69842719848, 35872777873, 8907116498, 2058469323, 1182713548, 212270573, 112735749399, 37089241924, 39351723824, 620611974, 2626931374, 8336399, 290390799]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v := Explode([G.1, G.3, G.4, G.6, G.8, G.9, G.10, G.11, G.12, G.13, G.14, G.15, G.16, G.17, G.18, G.19, G.20, G.21, G.22, G.23, G.24, G.25]); AssignNames(~G, ["a", "a3", "b", "c", "c3", "d", "d3", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v"]);
gap:G := PcGroupCode(797359087801579930790929223022595734696026027596157371929038620580950205461903441344256493840017222216049109284945993321918861964385190355942598342712862905637964311336879510465554770583569114752353929948214567711911846245863924263982958707062641595514569293928430380214113965667074282299731153923176355346206178850310743129062322609711816445860313082610486292902694778419067589481992378704345164197617576912748384366145850969423975733306859712651777850992386197836799628652315512898648252530687721468764692396775519388580209594329230554324012158117545513851577694211855802228438518472221508687180781378723324174838244671660333700379817790514815375307863381284128775245191752029330493271268540179960768343280375148950322918469232775651062812935406949770275894069262496365487555827685476511539861613439868772864901812372449337244836791239372086852175858749416376942067907481984851709403601669597808648626142659553535103626622342220698472603842103662999765800750928773478622501523675328543937870004742538987055234491077854315821467502540608741295186600297190529879583916548045507717183464060017394205667284535371048691431381085793081147455251586968727330470558867153874013079471122035977245198661878013499938509732368770674874474869188504764142843633933912324952836997685025906588003180990790391388797111965101808656101503068992182159643847341922426151666510440795286746701233698411312745672882257920,573308928); a := G.1; b := G.3; c := G.4; d := G.6; e := G.8; f := G.9; g := G.10; h := G.11; i := G.12; j := G.13; k := G.14; l := G.15; m := G.16; n := G.17; o := G.18; p := G.19; q := G.20; r := G.21; s := G.22; t := G.23; u := G.24; v := G.25;
sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(797359087801579930790929223022595734696026027596157371929038620580950205461903441344256493840017222216049109284945993321918861964385190355942598342712862905637964311336879510465554770583569114752353929948214567711911846245863924263982958707062641595514569293928430380214113965667074282299731153923176355346206178850310743129062322609711816445860313082610486292902694778419067589481992378704345164197617576912748384366145850969423975733306859712651777850992386197836799628652315512898648252530687721468764692396775519388580209594329230554324012158117545513851577694211855802228438518472221508687180781378723324174838244671660333700379817790514815375307863381284128775245191752029330493271268540179960768343280375148950322918469232775651062812935406949770275894069262496365487555827685476511539861613439868772864901812372449337244836791239372086852175858749416376942067907481984851709403601669597808648626142659553535103626622342220698472603842103662999765800750928773478622501523675328543937870004742538987055234491077854315821467502540608741295186600297190529879583916548045507717183464060017394205667284535371048691431381085793081147455251586968727330470558867153874013079471122035977245198661878013499938509732368770674874474869188504764142843633933912324952836997685025906588003180990790391388797111965101808656101503068992182159643847341922426151666510440795286746701233698411312745672882257920,573308928)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.8; f = G.9; g = G.10; h = G.11; i = G.12; j = G.13; k = G.14; l = G.15; m = G.16; n = G.17; o = G.18; p = G.19; q = G.20; r = G.21; s = G.22; t = G.23; u = G.24; v = G.25;
sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(797359087801579930790929223022595734696026027596157371929038620580950205461903441344256493840017222216049109284945993321918861964385190355942598342712862905637964311336879510465554770583569114752353929948214567711911846245863924263982958707062641595514569293928430380214113965667074282299731153923176355346206178850310743129062322609711816445860313082610486292902694778419067589481992378704345164197617576912748384366145850969423975733306859712651777850992386197836799628652315512898648252530687721468764692396775519388580209594329230554324012158117545513851577694211855802228438518472221508687180781378723324174838244671660333700379817790514815375307863381284128775245191752029330493271268540179960768343280375148950322918469232775651062812935406949770275894069262496365487555827685476511539861613439868772864901812372449337244836791239372086852175858749416376942067907481984851709403601669597808648626142659553535103626622342220698472603842103662999765800750928773478622501523675328543937870004742538987055234491077854315821467502540608741295186600297190529879583916548045507717183464060017394205667284535371048691431381085793081147455251586968727330470558867153874013079471122035977245198661878013499938509732368770674874474869188504764142843633933912324952836997685025906588003180990790391388797111965101808656101503068992182159643847341922426151666510440795286746701233698411312745672882257920,573308928)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.8; f = G.9; g = G.10; h = G.11; i = G.12; j = G.13; k = G.14; l = G.15; m = G.16; n = G.17; o = G.18; p = G.19; q = G.20; r = G.21; s = G.22; t = G.23; u = G.24; v = G.25;
|
Permutation group: | Degree $36$
$\langle(1,13,31,3,14,29)(2,16,30,4,15,32)(5,18,24,8,20,21)(6,19,22,7,17,23)(9,28,36,10,27,35) \!\cdots\! \rangle$
|
magma:G := PermutationGroup< 36 | (1,13,31,3,14,29)(2,16,30,4,15,32)(5,18,24,8,20,21)(6,19,22,7,17,23)(9,28,36,10,27,35)(11,25,34,12,26,33), (1,20,30,6,11,21,35,13,26)(2,17,31,8,12,22,33,16,27,3,19,32,7,9,24,34,14,28,4,18,29,5,10,23,36,15,25) >;
gap:G := Group( (1,13,31,3,14,29)(2,16,30,4,15,32)(5,18,24,8,20,21)(6,19,22,7,17,23)(9,28,36,10,27,35)(11,25,34,12,26,33), (1,20,30,6,11,21,35,13,26)(2,17,31,8,12,22,33,16,27,3,19,32,7,9,24,34,14,28,4,18,29,5,10,23,36,15,25) );
sage:G = PermutationGroup(['(1,13,31,3,14,29)(2,16,30,4,15,32)(5,18,24,8,20,21)(6,19,22,7,17,23)(9,28,36,10,27,35)(11,25,34,12,26,33)', '(1,20,30,6,11,21,35,13,26)(2,17,31,8,12,22,33,16,27,3,19,32,7,9,24,34,14,28,4,18,29,5,10,23,36,15,25)'])
|
Transitive group: |
36T89197 |
|
|
|
more information |
Direct product: |
not computed |
Semidirect product: |
not computed |
Trans. wreath product: |
not computed |
Possibly split product: |
$(C_2^{18}.C_9^2.C_3)$ . $C_9$ (2) |
$(C_2^{18}.C_9^2.C_3)$ . $C_9$ |
$(C_2^{18}.C_3^3.C_3^3)$ . $C_3$ |
$(C_2^{18}.C_9^2)$ . $(C_9:C_3)$ (2) |
all 17 |
Elements of the group are displayed as permutations of degree 36.
The $1408 \times 1408$ character table is not available for this group.
The $444 \times 444$ rational character table is not available for this group.