Properties

Label 5668704.fa
Order \( 2^{5} \cdot 3^{11} \)
Exponent \( 2^{2} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2 \cdot 3^{2} \)
$\card{Z(G)}$ \( 3 \)
$\card{\Aut(G)}$ \( 2^{8} \cdot 3^{13} \)
$\card{\mathrm{Out}(G)}$ \( 2^{3} \cdot 3^{3} \)
Perm deg. $36$
Trans deg. $36$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,10,23)(2,11,24)(3,12,22)(4,17,32,5,16,33,6,18,31)(7,21,28,9,20,30,8,19,29)(13,26,35,14,27,34,15,25,36), (1,16,3,18,2,17)(4,23,8,25)(5,22,9,26)(6,24,7,27)(10,30,15,31)(11,29,14,33)(12,28,13,32)(19,34,21,35,20,36) >;
 
Copy content gap:G := Group( (1,10,23)(2,11,24)(3,12,22)(4,17,32,5,16,33,6,18,31)(7,21,28,9,20,30,8,19,29)(13,26,35,14,27,34,15,25,36), (1,16,3,18,2,17)(4,23,8,25)(5,22,9,26)(6,24,7,27)(10,30,15,31)(11,29,14,33)(12,28,13,32)(19,34,21,35,20,36) );
 
Copy content sage:G = PermutationGroup(['(1,10,23)(2,11,24)(3,12,22)(4,17,32,5,16,33,6,18,31)(7,21,28,9,20,30,8,19,29)(13,26,35,14,27,34,15,25,36)', '(1,16,3,18,2,17)(4,23,8,25)(5,22,9,26)(6,24,7,27)(10,30,15,31)(11,29,14,33)(12,28,13,32)(19,34,21,35,20,36)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(143743703072020497672691466003389366911714251297098701946846062445068962415971564503269874307279735413943485360770149359950922405002443433726745479459244224983984075821680033123543443765945199271908061891332229017632024449650689915072313771608128706394946805826862131653680788082755988849241094818320424714925882896088933065127940895076300898769426970914217542146172724011403235435477696021099392173414720619866168601311274871665459948223,5668704)'); a = G.1; b = G.4; c = G.6; d = G.8; e = G.10; f = G.12; g = G.13; h = G.14; i = G.15; j = G.16;
 

Group information

Description:$C_3^9.C_2^4.C_{18}$
Order: \(5668704\)\(\medspace = 2^{5} \cdot 3^{11} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(408146688\)\(\medspace = 2^{8} \cdot 3^{13} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 5, $C_3$ x 11
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 9 12 18
Elements 1 3699 59048 78732 1118232 1889568 629856 1889568 5668704
Conjugacy classes   1 4 1127 1 1958 90 5 18 3204
Divisions 1 4 589 1 1002 15 3 3 1618
Autjugacy classes 1 4 115 1 168 8 3 2 302

Minimal presentations

Permutation degree:$36$
Transitive degree:$36$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 12 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j \mid a^{18}=b^{6}=c^{6}=d^{6}=e^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([16, 2, 3, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 32, 113, 358214403, 78918931, 179, 316638724, 155280980, 283563077, 174953973, 2751605, 1057893, 277, 319076358, 172964758, 23524086, 349532935, 259179287, 3838519, 1329479, 4728663, 375, 241864712, 273777432, 20792, 2521240, 257310729, 357438265, 4204857, 1054153, 7470809, 469545, 571321, 467177, 473, 146481994, 367465850, 37040314, 22394891, 181647387, 83035, 2459, 417830412, 218619676, 269660, 60028, 5148, 423263245, 141087773, 871005, 145277, 24349, 11197454, 19595550, 77918, 322486287, 2986015, 53747775, 8958047, 248991]); a,b,c,d,e,f,g,h,i,j := Explode([G.1, G.4, G.6, G.8, G.10, G.12, G.13, G.14, G.15, G.16]); AssignNames(~G, ["a", "a2", "a6", "b", "b2", "c", "c2", "d", "d2", "e", "e2", "f", "g", "h", "i", "j"]);
 
Copy content gap:G := PcGroupCode(143743703072020497672691466003389366911714251297098701946846062445068962415971564503269874307279735413943485360770149359950922405002443433726745479459244224983984075821680033123543443765945199271908061891332229017632024449650689915072313771608128706394946805826862131653680788082755988849241094818320424714925882896088933065127940895076300898769426970914217542146172724011403235435477696021099392173414720619866168601311274871665459948223,5668704); a := G.1; b := G.4; c := G.6; d := G.8; e := G.10; f := G.12; g := G.13; h := G.14; i := G.15; j := G.16;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(143743703072020497672691466003389366911714251297098701946846062445068962415971564503269874307279735413943485360770149359950922405002443433726745479459244224983984075821680033123543443765945199271908061891332229017632024449650689915072313771608128706394946805826862131653680788082755988849241094818320424714925882896088933065127940895076300898769426970914217542146172724011403235435477696021099392173414720619866168601311274871665459948223,5668704)'); a = G.1; b = G.4; c = G.6; d = G.8; e = G.10; f = G.12; g = G.13; h = G.14; i = G.15; j = G.16;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(143743703072020497672691466003389366911714251297098701946846062445068962415971564503269874307279735413943485360770149359950922405002443433726745479459244224983984075821680033123543443765945199271908061891332229017632024449650689915072313771608128706394946805826862131653680788082755988849241094818320424714925882896088933065127940895076300898769426970914217542146172724011403235435477696021099392173414720619866168601311274871665459948223,5668704)'); a = G.1; b = G.4; c = G.6; d = G.8; e = G.10; f = G.12; g = G.13; h = G.14; i = G.15; j = G.16;
 
Permutation group:Degree $36$ $\langle(1,10,23)(2,11,24)(3,12,22)(4,17,32,5,16,33,6,18,31)(7,21,28,9,20,30,8,19,29) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,10,23)(2,11,24)(3,12,22)(4,17,32,5,16,33,6,18,31)(7,21,28,9,20,30,8,19,29)(13,26,35,14,27,34,15,25,36), (1,16,3,18,2,17)(4,23,8,25)(5,22,9,26)(6,24,7,27)(10,30,15,31)(11,29,14,33)(12,28,13,32)(19,34,21,35,20,36) >;
 
Copy content gap:G := Group( (1,10,23)(2,11,24)(3,12,22)(4,17,32,5,16,33,6,18,31)(7,21,28,9,20,30,8,19,29)(13,26,35,14,27,34,15,25,36), (1,16,3,18,2,17)(4,23,8,25)(5,22,9,26)(6,24,7,27)(10,30,15,31)(11,29,14,33)(12,28,13,32)(19,34,21,35,20,36) );
 
Copy content sage:G = PermutationGroup(['(1,10,23)(2,11,24)(3,12,22)(4,17,32,5,16,33,6,18,31)(7,21,28,9,20,30,8,19,29)(13,26,35,14,27,34,15,25,36)', '(1,16,3,18,2,17)(4,23,8,25)(5,22,9,26)(6,24,7,27)(10,30,15,31)(11,29,14,33)(12,28,13,32)(19,34,21,35,20,36)'])
 
Transitive group: 36T54812 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_3^6$ . $(C_6^4.C_6)$ $(C_3^{10}.C_2^3)$ . $A_4$ $C_3^{10}$ . $(C_2^3:A_4)$ $(C_3^{10}.C_2^4)$ . $C_6$ all 37

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{18} \simeq C_{2} \times C_{9}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2} \times C_{6}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 39 normal subgroups, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_3$ $G/Z \simeq$ $C_3^9.C_2^4.C_6$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_3^9.C_2^4$ $G/G' \simeq$ $C_{18}$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_3^3$ $G/\Phi \simeq$ $C_3^7.C_2^3:A_4$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_3^{10}$ $G/\operatorname{Fit} \simeq$ $C_2^3:A_4$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_3^9.C_2^4.C_{18}$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_3^8$ $G/\operatorname{soc} \simeq$ $(C_2^2\times C_6^2):C_6$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^2\wr C_2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^{10}.C_3$

Subgroup diagram and profile

Series

Derived series $C_3^9.C_2^4.C_{18}$ $\rhd$ $C_3^9.C_2^4$ $\rhd$ $C_3^6$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_3^9.C_2^4.C_{18}$ $\rhd$ $C_3^8.C_2^4.C_3^2.C_3$ $\rhd$ $C_3^{10}.C_2^4$ $\rhd$ $C_3^9.C_2^4$ $\rhd$ $C_3^9.C_2^2$ $\rhd$ $C_3^9$ $\rhd$ $C_3^8$ $\rhd$ $C_3^7$ $\rhd$ $C_3^6$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_3^9.C_2^4.C_{18}$ $\rhd$ $C_3^9.C_2^4$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_3$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 4 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $3204 \times 3204$ character table is not available for this group.

Rational character table

The $1618 \times 1618$ rational character table is not available for this group.