Properties

Label 56623104.o
Order \( 2^{21} \cdot 3^{3} \)
Exponent \( 2^{3} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \)
$\card{Z(G)}$ 2
$\card{\Aut(G)}$ \( 2^{25} \cdot 3^{5} \)
$\card{\mathrm{Out}(G)}$ \( 2^{5} \cdot 3^{2} \)
Perm deg. not computed
Trans deg. $36$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,19,2,20)(3,24,4,23)(5,21)(6,22)(7,17)(8,18)(9,15,10,16)(11,14,12,13)(25,31,26,32)(27,36,28,35)(29,33,30,34), (1,21,17,9,2,22,18,10)(3,20,13,8)(4,19,14,7)(5,23,16,12,6,24,15,11)(25,34,26,33)(27,31,28,32)(29,35)(30,36), (1,31,2,32)(3,35)(4,36)(5,33,6,34)(7,16)(8,15)(9,13,10,14)(11,18)(12,17)(19,27)(20,28)(21,26,22,25)(23,29)(24,30) >;
 
Copy content gap:G := Group( (1,19,2,20)(3,24,4,23)(5,21)(6,22)(7,17)(8,18)(9,15,10,16)(11,14,12,13)(25,31,26,32)(27,36,28,35)(29,33,30,34), (1,21,17,9,2,22,18,10)(3,20,13,8)(4,19,14,7)(5,23,16,12,6,24,15,11)(25,34,26,33)(27,31,28,32)(29,35)(30,36), (1,31,2,32)(3,35)(4,36)(5,33,6,34)(7,16)(8,15)(9,13,10,14)(11,18)(12,17)(19,27)(20,28)(21,26,22,25)(23,29)(24,30) );
 
Copy content sage:G = PermutationGroup(['(1,19,2,20)(3,24,4,23)(5,21)(6,22)(7,17)(8,18)(9,15,10,16)(11,14,12,13)(25,31,26,32)(27,36,28,35)(29,33,30,34)', '(1,21,17,9,2,22,18,10)(3,20,13,8)(4,19,14,7)(5,23,16,12,6,24,15,11)(25,34,26,33)(27,31,28,32)(29,35)(30,36)', '(1,31,2,32)(3,35)(4,36)(5,33,6,34)(7,16)(8,15)(9,13,10,14)(11,18)(12,17)(19,27)(20,28)(21,26,22,25)(23,29)(24,30)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(9241460489270772346272522516042796798371576218235264472417440720501778406008381765870521130899515155002392266079731731944009215996725362221100672104763253724871498273059537659508640192386075704165871748732723145286982453519322972851256183866490389788705437995009953531052390882362636323485139324612273350654798111544798341203744730282721158119254431234103137988864804979847177156436377109236920123432349294117784397569541208033721765549036439080198585263960982155958358424595651999298785546334202170241135411493938279423643710567347859600638754394210715264331239972030445728058910090711530369843839624988743865131666610362074828418919149833991819809838478016675223785684294139986172000742380825264628713059788830069817131203758656461706988361729135239314582941242139894860965427986513971283247694340923620963628718271461689086926400732405392981943869038218569606919127721017894753658401166846136771976849308570279802307300811793271560816335674459066276442631704827275868807606418599362023800863210341949736578504360348815555007432904041596319716885069068787945072713512664947984248185116058676701308066569013704061834905767586873371744573266758965974526252135258562307831081586567531908816865120635482482138457022317598327872522649111968107752607721120762000469648250111523782455065835296348244410514441747520737295004130753800026281527324506391573496855480818721075035217055482531768138258683233011847479296,56623104)'); a = G.1; b = G.2; c = G.3; d = G.5; e = G.7; f = G.9; g = G.11; h = G.12; i = G.13; j = G.14; k = G.15; l = G.16; m = G.17; n = G.18; o = G.19; p = G.20; q = G.21; r = G.22; s = G.23; t = G.24;
 

Group information

Description:$C_2^{12}.S_4^2:S_4$
Order: \(56623104\)\(\medspace = 2^{21} \cdot 3^{3} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(8153726976\)\(\medspace = 2^{25} \cdot 3^{5} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 21, $C_3$ x 3
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 12
Elements 1 504831 90368 10177536 14196480 12386304 19267584 56623104
Conjugacy classes   1 2816 6 3079 463 56 203 6624
Divisions 1 2816 5 3079 419 56 182 6558

Minimal presentations

Permutation degree:not computed
Transitive degree:$36$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t \mid c^{4}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([24, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 594094656, 252347617, 632655385, 1442, 570635594, 194, 4063786755, 2666166171, 2115738244, 2359421788, 1037683732, 165270556, 340, 6180042245, 991226909, 861531317, 122959949, 7279050246, 3347793822, 480255606, 1076449326, 333724710, 294813414, 486, 849825799, 1784973343, 228280375, 1118089807, 46453351, 173851903, 4386763016, 5736438176, 1019765432, 453885200, 386167928, 118990424, 104790824, 19269752, 632, 70318089, 1629342753, 1503855417, 1512933201, 583960425, 79635009, 88476633, 30967377, 2893245706, 3720055714, 3455540410, 114154, 85666, 9741754, 68129602, 22710010, 812026, 14092434443, 6599771171, 789067067, 186731, 31235, 31871387, 26552627, 8851019, 2656163, 6348865548, 6348865572, 207028284, 819217260, 70222596, 43265820, 21610548, 12703703053, 6918524965, 3079544893, 688601197, 488726917, 52690333, 26393653, 8789965, 7749733, 15034429454, 6760765478, 5062487102, 629234030, 119595014, 11353118, 5780342, 19941326, 12182630, 6863781903, 4833312807, 388841535, 519229551, 129558663, 16644255, 8101047, 21307599, 13013223, 14709620752, 8753578024, 2556417088, 14100592, 547098760, 62982304, 31021240, 10183888, 15119080, 20161363985, 5000030273, 978283121, 200061065, 192098465, 97044665, 10948817, 16091369, 3252731922, 3032100906, 3994997826, 579944562, 113467530, 193314978, 98758842, 32919762, 16109802, 20191887379, 8576409643, 4203601987, 583925875, 398131339, 172523683, 81838267, 27279571, 14377195, 3602092052, 9047033900, 989356100, 557383796, 111476876, 278692004, 130056380, 43352276, 23224556, 94887957, 7580086317, 4738922565, 1634992245, 175177869, 175177893, 107053245, 35684565, 14598381, 15872163862, 7875035182, 116370502, 854655094, 732561550, 244187302, 81395902, 27132118, 20349166, 382205975, 8281129007, 5137883207, 1274019959, 254804111, 84934823, 127402175, 42467543, 7078127]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t := Explode([G.1, G.2, G.3, G.5, G.7, G.9, G.11, G.12, G.13, G.14, G.15, G.16, G.17, G.18, G.19, G.20, G.21, G.22, G.23, G.24]); AssignNames(~G, ["a", "b", "c", "c2", "d", "d2", "e", "e2", "f", "f2", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t"]);
 
Copy content gap:G := PcGroupCode(9241460489270772346272522516042796798371576218235264472417440720501778406008381765870521130899515155002392266079731731944009215996725362221100672104763253724871498273059537659508640192386075704165871748732723145286982453519322972851256183866490389788705437995009953531052390882362636323485139324612273350654798111544798341203744730282721158119254431234103137988864804979847177156436377109236920123432349294117784397569541208033721765549036439080198585263960982155958358424595651999298785546334202170241135411493938279423643710567347859600638754394210715264331239972030445728058910090711530369843839624988743865131666610362074828418919149833991819809838478016675223785684294139986172000742380825264628713059788830069817131203758656461706988361729135239314582941242139894860965427986513971283247694340923620963628718271461689086926400732405392981943869038218569606919127721017894753658401166846136771976849308570279802307300811793271560816335674459066276442631704827275868807606418599362023800863210341949736578504360348815555007432904041596319716885069068787945072713512664947984248185116058676701308066569013704061834905767586873371744573266758965974526252135258562307831081586567531908816865120635482482138457022317598327872522649111968107752607721120762000469648250111523782455065835296348244410514441747520737295004130753800026281527324506391573496855480818721075035217055482531768138258683233011847479296,56623104); a := G.1; b := G.2; c := G.3; d := G.5; e := G.7; f := G.9; g := G.11; h := G.12; i := G.13; j := G.14; k := G.15; l := G.16; m := G.17; n := G.18; o := G.19; p := G.20; q := G.21; r := G.22; s := G.23; t := G.24;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(9241460489270772346272522516042796798371576218235264472417440720501778406008381765870521130899515155002392266079731731944009215996725362221100672104763253724871498273059537659508640192386075704165871748732723145286982453519322972851256183866490389788705437995009953531052390882362636323485139324612273350654798111544798341203744730282721158119254431234103137988864804979847177156436377109236920123432349294117784397569541208033721765549036439080198585263960982155958358424595651999298785546334202170241135411493938279423643710567347859600638754394210715264331239972030445728058910090711530369843839624988743865131666610362074828418919149833991819809838478016675223785684294139986172000742380825264628713059788830069817131203758656461706988361729135239314582941242139894860965427986513971283247694340923620963628718271461689086926400732405392981943869038218569606919127721017894753658401166846136771976849308570279802307300811793271560816335674459066276442631704827275868807606418599362023800863210341949736578504360348815555007432904041596319716885069068787945072713512664947984248185116058676701308066569013704061834905767586873371744573266758965974526252135258562307831081586567531908816865120635482482138457022317598327872522649111968107752607721120762000469648250111523782455065835296348244410514441747520737295004130753800026281527324506391573496855480818721075035217055482531768138258683233011847479296,56623104)'); a = G.1; b = G.2; c = G.3; d = G.5; e = G.7; f = G.9; g = G.11; h = G.12; i = G.13; j = G.14; k = G.15; l = G.16; m = G.17; n = G.18; o = G.19; p = G.20; q = G.21; r = G.22; s = G.23; t = G.24;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(9241460489270772346272522516042796798371576218235264472417440720501778406008381765870521130899515155002392266079731731944009215996725362221100672104763253724871498273059537659508640192386075704165871748732723145286982453519322972851256183866490389788705437995009953531052390882362636323485139324612273350654798111544798341203744730282721158119254431234103137988864804979847177156436377109236920123432349294117784397569541208033721765549036439080198585263960982155958358424595651999298785546334202170241135411493938279423643710567347859600638754394210715264331239972030445728058910090711530369843839624988743865131666610362074828418919149833991819809838478016675223785684294139986172000742380825264628713059788830069817131203758656461706988361729135239314582941242139894860965427986513971283247694340923620963628718271461689086926400732405392981943869038218569606919127721017894753658401166846136771976849308570279802307300811793271560816335674459066276442631704827275868807606418599362023800863210341949736578504360348815555007432904041596319716885069068787945072713512664947984248185116058676701308066569013704061834905767586873371744573266758965974526252135258562307831081586567531908816865120635482482138457022317598327872522649111968107752607721120762000469648250111523782455065835296348244410514441747520737295004130753800026281527324506391573496855480818721075035217055482531768138258683233011847479296,56623104)'); a = G.1; b = G.2; c = G.3; d = G.5; e = G.7; f = G.9; g = G.11; h = G.12; i = G.13; j = G.14; k = G.15; l = G.16; m = G.17; n = G.18; o = G.19; p = G.20; q = G.21; r = G.22; s = G.23; t = G.24;
 
Permutation group:Degree $36$ $\langle(1,19,2,20)(3,24,4,23)(5,21)(6,22)(7,17)(8,18)(9,15,10,16)(11,14,12,13) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,19,2,20)(3,24,4,23)(5,21)(6,22)(7,17)(8,18)(9,15,10,16)(11,14,12,13)(25,31,26,32)(27,36,28,35)(29,33,30,34), (1,21,17,9,2,22,18,10)(3,20,13,8)(4,19,14,7)(5,23,16,12,6,24,15,11)(25,34,26,33)(27,31,28,32)(29,35)(30,36), (1,31,2,32)(3,35)(4,36)(5,33,6,34)(7,16)(8,15)(9,13,10,14)(11,18)(12,17)(19,27)(20,28)(21,26,22,25)(23,29)(24,30) >;
 
Copy content gap:G := Group( (1,19,2,20)(3,24,4,23)(5,21)(6,22)(7,17)(8,18)(9,15,10,16)(11,14,12,13)(25,31,26,32)(27,36,28,35)(29,33,30,34), (1,21,17,9,2,22,18,10)(3,20,13,8)(4,19,14,7)(5,23,16,12,6,24,15,11)(25,34,26,33)(27,31,28,32)(29,35)(30,36), (1,31,2,32)(3,35)(4,36)(5,33,6,34)(7,16)(8,15)(9,13,10,14)(11,18)(12,17)(19,27)(20,28)(21,26,22,25)(23,29)(24,30) );
 
Copy content sage:G = PermutationGroup(['(1,19,2,20)(3,24,4,23)(5,21)(6,22)(7,17)(8,18)(9,15,10,16)(11,14,12,13)(25,31,26,32)(27,36,28,35)(29,33,30,34)', '(1,21,17,9,2,22,18,10)(3,20,13,8)(4,19,14,7)(5,23,16,12,6,24,15,11)(25,34,26,33)(27,31,28,32)(29,35)(30,36)', '(1,31,2,32)(3,35)(4,36)(5,33,6,34)(7,16)(8,15)(9,13,10,14)(11,18)(12,17)(19,27)(20,28)(21,26,22,25)(23,29)(24,30)'])
 
Transitive group: 36T74468 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not computed
Possibly split product: $C_2^{18}$ . $(S_3^2:S_3)$ $C_2^{16}$ . $(S_3^2:S_4)$ (3) $C_2^{14}$ . $(S_4^2:S_3)$ $C_2^{12}$ . $(S_4^2:S_4)$ (3) all 72

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2}^{3} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{9}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 167 normal subgroups (56 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_2$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_2$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 3 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $6624 \times 6624$ character table is not available for this group.

Rational character table

The $6558 \times 6558$ rational character table is not available for this group.