Properties

Label 56623104.bh
Order \( 2^{21} \cdot 3^{3} \)
Exponent \( 2^{3} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \)
$\card{Z(G)}$ 2
$\card{\Aut(G)}$ \( 2^{24} \cdot 3^{3} \)
$\card{\mathrm{Out}(G)}$ \( 2^{4} \)
Perm deg. not computed
Trans deg. $36$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,21,17,31,3,23,13,34,6,20,16,35,2,22,18,32,4,24,14,33,5,19,15,36)(7,27,12,26,9,30,8,28,11,25,10,29), (1,28,14,3,26,16)(2,27,13,4,25,15)(5,30,18,6,29,17)(7,33,20,10,32,21,8,34,19,9,31,22)(11,35,23,12,36,24), (1,24,3,20,5,22,2,23,4,19,6,21)(7,30,9,26,11,27)(8,29,10,25,12,28)(13,35,16,32,17,34)(14,36,15,31,18,33) >;
 
Copy content gap:G := Group( (1,21,17,31,3,23,13,34,6,20,16,35,2,22,18,32,4,24,14,33,5,19,15,36)(7,27,12,26,9,30,8,28,11,25,10,29), (1,28,14,3,26,16)(2,27,13,4,25,15)(5,30,18,6,29,17)(7,33,20,10,32,21,8,34,19,9,31,22)(11,35,23,12,36,24), (1,24,3,20,5,22,2,23,4,19,6,21)(7,30,9,26,11,27)(8,29,10,25,12,28)(13,35,16,32,17,34)(14,36,15,31,18,33) );
 
Copy content sage:G = PermutationGroup(['(1,21,17,31,3,23,13,34,6,20,16,35,2,22,18,32,4,24,14,33,5,19,15,36)(7,27,12,26,9,30,8,28,11,25,10,29)', '(1,28,14,3,26,16)(2,27,13,4,25,15)(5,30,18,6,29,17)(7,33,20,10,32,21,8,34,19,9,31,22)(11,35,23,12,36,24)', '(1,24,3,20,5,22,2,23,4,19,6,21)(7,30,9,26,11,27)(8,29,10,25,12,28)(13,35,16,32,17,34)(14,36,15,31,18,33)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(300505808182150665587685961649391471263731925796943337189622045817884984958174808925634092855643120888332129132701058106793360941905386436978700808335477375664811831497268660327827810055095378825350137928061486724113416002907848105487768123316763104538360857961230558044751976366514131715977411173921253500127230599523919325179906330281484622437372098015951125265144118827065705576825516442768955153527740268522361519839541552351209927728753849434089283626336074703896800818518293827686753948964852115362365831719479662891370158966501274365437947343356286544050583430062211755785286634924875917250764398286229502064804869906803029730543961922993259983370790661241564473357605270820168376529535129845178505979737198059221603858570891510353356405948636042708973709913358720636547082880061325623975504982226173391234360357410332447820066383259432572026923542645186604734640629408152566603002697529591646456658050678584729562392111418451986816703380111551897053825209689184872246171189505869991334594046968350480925075657286857306690543410478232465828566870972125436679246000160410004674291534649214700407547861756581950989833336529010383433446302568368580999058049128153533277474381885050899631235127838989119878506964533519024575923025475551788896071103075129011842183309456015620339153168897572658728598585344,56623104)'); a = G.1; b = G.2; c = G.3; d = G.4; e = G.6; f = G.7; g = G.9; h = G.11; i = G.12; j = G.13; k = G.14; l = G.15; m = G.16; n = G.17; o = G.18; p = G.19; q = G.20; r = G.21; s = G.22; t = G.23; u = G.24;
 

Group information

Description:$C_2^{12}.S_4^2:D_{12}$
Order: \(56623104\)\(\medspace = 2^{21} \cdot 3^{3} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(452984832\)\(\medspace = 2^{24} \cdot 3^{3} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 21, $C_3$ x 3
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 12 24
Elements 1 295423 90368 12418560 8281856 8257536 24920064 2359296 56623104
Conjugacy classes   1 869 5 1426 161 38 162 2 2664
Divisions 1 869 5 1422 161 36 157 1 2652
Autjugacy classes 1 586 5 627 118 23 67 1 1428

Minimal presentations

Permutation degree:not computed
Transitive degree:$36$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 18 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u \mid d^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([24, 2, 2, 2, 2, 3, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 246283392, 1279857121, 895554265, 852457826, 379345994, 590552690, 2378364675, 2407629723, 1139610099, 267, 5541317764, 20114908, 658585012, 209136389, 1138237085, 1258369397, 24049517, 131399381, 46780541, 641813766, 2003025054, 1218555126, 527157870, 262565958, 49934094, 486, 1359396871, 4501647391, 11289655, 13939279, 7965031, 3098239, 3145754888, 3861820832, 902280440, 342105200, 481618328, 133884704, 49394600, 622904, 632, 116167689, 21588513, 2176519737, 1619101521, 637027305, 115027329, 70781913, 9359691274, 1877230114, 3324860410, 1642471858, 821178970, 3060418, 1986490, 765250, 7329097739, 4182160931, 2588744507, 410458835, 205105067, 88294019, 1513883, 1254707, 19467851, 3540899, 828112908, 1518207012, 37739580, 2695764, 11052396, 2246556, 1145844, 12485394445, 1932263461, 66189373, 17418325, 4064365, 4161157, 2854813, 1379125, 16562257934, 1274019878, 19906622, 27371606, 12441710, 1036958, 414902, 12230590479, 9512681511, 47775807, 31850583, 18579567, 3981447, 3096735, 1327287, 1443889168, 5053612072, 28201024, 8460376, 9870448, 2350216, 235168, 587704, 16817061905, 764411945, 59719745, 38817881, 7465073, 1493129, 746657, 1368761, 239542290, 157593642, 302579778, 252149850, 529514610, 1401042, 1050858, 232243219, 169205803, 106168387, 2654208091, 796262515, 26542219, 2212051, 368875, 222953492, 69673004, 891813956, 891813980, 557383796, 37159124, 20127980, 29196309, 145981485, 5605687365, 3036414045, 1751777397, 272498829, 16220373, 11354349, 396804118, 122093614, 7325614150, 1220935774, 122093686, 37306582, 25436398, 445906967, 191103023, 5096079431, 3567255647, 764412023, 382206095, 21233879, 24772847]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u := Explode([G.1, G.2, G.3, G.4, G.6, G.7, G.9, G.11, G.12, G.13, G.14, G.15, G.16, G.17, G.18, G.19, G.20, G.21, G.22, G.23, G.24]); AssignNames(~G, ["a", "b", "c", "d", "d2", "e", "f", "f2", "g", "g2", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u"]);
 
Copy content gap:G := PcGroupCode(300505808182150665587685961649391471263731925796943337189622045817884984958174808925634092855643120888332129132701058106793360941905386436978700808335477375664811831497268660327827810055095378825350137928061486724113416002907848105487768123316763104538360857961230558044751976366514131715977411173921253500127230599523919325179906330281484622437372098015951125265144118827065705576825516442768955153527740268522361519839541552351209927728753849434089283626336074703896800818518293827686753948964852115362365831719479662891370158966501274365437947343356286544050583430062211755785286634924875917250764398286229502064804869906803029730543961922993259983370790661241564473357605270820168376529535129845178505979737198059221603858570891510353356405948636042708973709913358720636547082880061325623975504982226173391234360357410332447820066383259432572026923542645186604734640629408152566603002697529591646456658050678584729562392111418451986816703380111551897053825209689184872246171189505869991334594046968350480925075657286857306690543410478232465828566870972125436679246000160410004674291534649214700407547861756581950989833336529010383433446302568368580999058049128153533277474381885050899631235127838989119878506964533519024575923025475551788896071103075129011842183309456015620339153168897572658728598585344,56623104); a := G.1; b := G.2; c := G.3; d := G.4; e := G.6; f := G.7; g := G.9; h := G.11; i := G.12; j := G.13; k := G.14; l := G.15; m := G.16; n := G.17; o := G.18; p := G.19; q := G.20; r := G.21; s := G.22; t := G.23; u := G.24;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(300505808182150665587685961649391471263731925796943337189622045817884984958174808925634092855643120888332129132701058106793360941905386436978700808335477375664811831497268660327827810055095378825350137928061486724113416002907848105487768123316763104538360857961230558044751976366514131715977411173921253500127230599523919325179906330281484622437372098015951125265144118827065705576825516442768955153527740268522361519839541552351209927728753849434089283626336074703896800818518293827686753948964852115362365831719479662891370158966501274365437947343356286544050583430062211755785286634924875917250764398286229502064804869906803029730543961922993259983370790661241564473357605270820168376529535129845178505979737198059221603858570891510353356405948636042708973709913358720636547082880061325623975504982226173391234360357410332447820066383259432572026923542645186604734640629408152566603002697529591646456658050678584729562392111418451986816703380111551897053825209689184872246171189505869991334594046968350480925075657286857306690543410478232465828566870972125436679246000160410004674291534649214700407547861756581950989833336529010383433446302568368580999058049128153533277474381885050899631235127838989119878506964533519024575923025475551788896071103075129011842183309456015620339153168897572658728598585344,56623104)'); a = G.1; b = G.2; c = G.3; d = G.4; e = G.6; f = G.7; g = G.9; h = G.11; i = G.12; j = G.13; k = G.14; l = G.15; m = G.16; n = G.17; o = G.18; p = G.19; q = G.20; r = G.21; s = G.22; t = G.23; u = G.24;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(300505808182150665587685961649391471263731925796943337189622045817884984958174808925634092855643120888332129132701058106793360941905386436978700808335477375664811831497268660327827810055095378825350137928061486724113416002907848105487768123316763104538360857961230558044751976366514131715977411173921253500127230599523919325179906330281484622437372098015951125265144118827065705576825516442768955153527740268522361519839541552351209927728753849434089283626336074703896800818518293827686753948964852115362365831719479662891370158966501274365437947343356286544050583430062211755785286634924875917250764398286229502064804869906803029730543961922993259983370790661241564473357605270820168376529535129845178505979737198059221603858570891510353356405948636042708973709913358720636547082880061325623975504982226173391234360357410332447820066383259432572026923542645186604734640629408152566603002697529591646456658050678584729562392111418451986816703380111551897053825209689184872246171189505869991334594046968350480925075657286857306690543410478232465828566870972125436679246000160410004674291534649214700407547861756581950989833336529010383433446302568368580999058049128153533277474381885050899631235127838989119878506964533519024575923025475551788896071103075129011842183309456015620339153168897572658728598585344,56623104)'); a = G.1; b = G.2; c = G.3; d = G.4; e = G.6; f = G.7; g = G.9; h = G.11; i = G.12; j = G.13; k = G.14; l = G.15; m = G.16; n = G.17; o = G.18; p = G.19; q = G.20; r = G.21; s = G.22; t = G.23; u = G.24;
 
Permutation group:Degree $36$ $\langle(1,21,17,31,3,23,13,34,6,20,16,35,2,22,18,32,4,24,14,33,5,19,15,36)(7,27,12,26,9,30,8,28,11,25,10,29) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,21,17,31,3,23,13,34,6,20,16,35,2,22,18,32,4,24,14,33,5,19,15,36)(7,27,12,26,9,30,8,28,11,25,10,29), (1,28,14,3,26,16)(2,27,13,4,25,15)(5,30,18,6,29,17)(7,33,20,10,32,21,8,34,19,9,31,22)(11,35,23,12,36,24), (1,24,3,20,5,22,2,23,4,19,6,21)(7,30,9,26,11,27)(8,29,10,25,12,28)(13,35,16,32,17,34)(14,36,15,31,18,33) >;
 
Copy content gap:G := Group( (1,21,17,31,3,23,13,34,6,20,16,35,2,22,18,32,4,24,14,33,5,19,15,36)(7,27,12,26,9,30,8,28,11,25,10,29), (1,28,14,3,26,16)(2,27,13,4,25,15)(5,30,18,6,29,17)(7,33,20,10,32,21,8,34,19,9,31,22)(11,35,23,12,36,24), (1,24,3,20,5,22,2,23,4,19,6,21)(7,30,9,26,11,27)(8,29,10,25,12,28)(13,35,16,32,17,34)(14,36,15,31,18,33) );
 
Copy content sage:G = PermutationGroup(['(1,21,17,31,3,23,13,34,6,20,16,35,2,22,18,32,4,24,14,33,5,19,15,36)(7,27,12,26,9,30,8,28,11,25,10,29)', '(1,28,14,3,26,16)(2,27,13,4,25,15)(5,30,18,6,29,17)(7,33,20,10,32,21,8,34,19,9,31,22)(11,35,23,12,36,24)', '(1,24,3,20,5,22,2,23,4,19,6,21)(7,30,9,26,11,27)(8,29,10,25,12,28)(13,35,16,32,17,34)(14,36,15,31,18,33)'])
 
Transitive group: 36T74487 36T74491 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_2^{13}$ . $(S_4^2:D_6)$ $C_2^{17}$ . $(S_3^3:C_2)$ $C_2^{11}$ . $(S_4^3:C_2)$ $C_2^{15}$ . $(D_6^2:D_6)$ all 65

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2}^{3} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{8}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 86 normal subgroups (76 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_2$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_2^3$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 4 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $2664 \times 2664$ character table is not available for this group.

Rational character table

The $2652 \times 2652$ rational character table is not available for this group.