Properties

Label 531360.a
Order \( 2^{5} \cdot 3^{4} \cdot 5 \cdot 41 \)
Exponent \( 2^{4} \cdot 3 \cdot 5 \cdot 41 \)
Nilpotent no
Solvable no
$\card{G^{\mathrm{ab}}}$ \( 1 \)
$\card{Z(G)}$ 2
$\card{\Aut(G)}$ \( 2^{7} \cdot 3^{4} \cdot 5 \cdot 41 \)
$\card{\mathrm{Out}(G)}$ \( 2^{3} \)
Perm deg. $1312$
Trans deg. not computed
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content magma:G := SL(2, 81);
 
Copy content gap:G := SL(2, 81);
 
Copy content sage:G = SL(2, 81)
 
Copy content comment:Define the group as a permutation group
 

Group information

Description:$\SL(2,81)$
Order: \(531360\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5 \cdot 41 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(9840\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 41 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$\PGammaL(2,81)$, of order \(2125440\)\(\medspace = 2^{7} \cdot 3^{4} \cdot 5 \cdot 41 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$, $\PSL(2,81)$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$0$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and quasisimple (hence nonsolvable and perfect). Whether it is almost simple has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 5 6 8 10 16 20 40 41 80 82
Elements 1 1 6560 6642 13284 6560 13284 13284 26568 26568 53136 129600 106272 129600 531360
Conjugacy classes   1 1 2 1 2 2 2 2 4 4 8 20 16 20 85
Divisions 1 1 2 1 1 2 1 1 1 1 1 1 1 1 16
Autjugacy classes 1 1 1 1 1 1 1 1 1 1 2 5 4 5 26

Minimal presentations

Permutation degree:$1312$
Transitive degree:not computed
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 40 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Groups of Lie type:$\SL(2,81)$, $\SU(2,81)$, $\SpinMinus(4,9)$
Permutation group:Degree $1312$ $\langle(1,3,5)(2,7,8)(4,11,13)(6,15,16)(9,20,21)(10,22,24)(12,27,29)(14,31,32) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 1312 | (1,3,5)(2,7,8)(4,11,13)(6,15,16)(9,20,21)(10,22,24)(12,27,29)(14,31,32)(17,36,37)(18,38,40)(19,42,43)(23,50,52)(25,56,57)(26,58,60)(28,63,65)(30,67,68)(33,72,73)(34,74,76)(35,78,79)(39,86,88)(41,92,93)(44,98,99)(45,100,102)(46,104,105)(47,106,108)(48,110,111)(49,112,114)(51,117,119)(53,122,123)(54,124,126)(55,128,129)(59,136,138)(61,142,143)(62,144,146)(64,149,151)(66,153,154)(69,158,159)(70,160,162)(71,164,165)(75,172,174)(77,178,179)(80,184,185)(81,186,188)(82,190,191)(83,192,194)(84,196,197)(85,198,200)(87,203,205)(89,208,209)(90,210,212)(91,214,215)(94,219,221)(95,223,211)(96,224,226)(97,228,229)(101,235,237)(103,241,242)(107,249,251)(109,254,255)(113,261,263)(115,267,268)(116,183,270)(118,273,275)(120,278,279)(121,281,282)(125,288,290)(127,294,295)(130,299,265)(131,300,302)(132,304,305)(133,306,308)(134,310,311)(135,312,314)(137,316,318)(139,321,322)(140,243,324)(141,326,327)(145,334,336)(147,340,341)(148,342,344)(150,347,349)(152,351,352)(155,356,357)(156,358,360)(157,362,271)(161,218,370)(163,374,375)(166,379,380)(167,381,383)(168,385,386)(169,387,389)(170,391,392)(171,393,395)(173,397,399)(175,402,403)(176,404,406)(177,408,409)(180,413,415)(181,417,405)(182,418,335)(187,425,427)(189,431,432)(193,438,440)(195,443,444)(199,450,452)(201,325,455)(202,378,457)(204,460,462)(206,465,466)(207,468,469)(213,478,238)(216,245,484)(217,486,487)(220,491,493)(222,497,498)(225,502,504)(227,451,507)(230,512,369)(231,513,514)(232,515,517)(233,519,520)(234,521,522)(236,525,527)(239,530,531)(240,533,534)(244,539,541)(246,543,544)(247,546,547)(248,548,550)(250,553,555)(252,558,559)(253,561,562)(256,567,568)(257,570,571)(258,572,574)(259,575,576)(260,276,578)(262,580,582)(264,585,586)(266,589,590)(269,592,594)(272,597,599)(274,284,603)(277,608,609)(280,537,615)(283,619,505)(285,621,622)(286,623,488)(287,626,627)(289,629,430)(291,633,634)(292,361,636)(293,638,639)(296,642,644)(297,388,646)(298,647,648)(301,651,653)(303,500,656)(307,662,664)(309,667,668)(313,673,595)(315,678,390)(317,680,682)(319,685,686)(320,688,689)(323,693,694)(328,459,676)(329,698,569)(330,701,607)(331,702,704)(332,706,707)(333,492,709)(337,549,713)(338,657,411)(339,715,556)(343,564,721)(345,724,725)(346,726,728)(348,731,733)(350,735,736)(353,740,526)(354,614,742)(355,744,458)(359,412,749)(363,752,753)(364,754,481)(365,756,757)(366,758,759)(367,760,761)(368,762,763)(371,601,766)(372,767,768)(373,675,770)(376,773,774)(377,776,649)(382,781,783)(384,785,786)(394,798,799)(396,692,802)(398,804,658)(400,807,808)(401,810,811)(407,818,428)(410,434,821)(414,824,825)(416,829,830)(419,832,833)(420,722,835)(421,837,748)(422,540,838)(423,839,841)(424,843,844)(426,847,848)(429,695,850)(433,854,856)(435,858,859)(436,861,862)(437,863,864)(439,866,867)(441,869,870)(442,871,872)(445,875,876)(446,877,878)(447,879,881)(448,882,883)(449,463,885)(453,889,890)(454,891,892)(456,893,895)(461,471,899)(464,901,902)(467,853,906)(470,910,710)(472,911,822)(473,914,915)(474,916,716)(475,918,584)(476,743,920)(477,751,921)(479,650,886)(480,720,925)(482,640,659)(483,928,738)(485,579,930)(489,934,935)(490,936,938)(494,943,944)(495,945,946)(496,947,948)(499,951,952)(501,954,719)(503,817,956)(506,958,959)(508,708,962)(509,963,965)(510,845,966)(511,968,969)(516,975,976)(518,978,979)(523,983,967)(524,984,840)(528,778,855)(529,987,813)(532,989,729)(535,991,993)(536,598,995)(538,923,997)(542,1003,1004)(551,1011,1012)(552,661,1014)(554,652,1017)(557,1020,1021)(560,1023,687)(563,1026,1027)(565,1029,670)(566,971,1031)(577,1041,1043)(581,730,1046)(583,1048,927)(587,1052,1054)(588,1055,898)(591,718,1058)(593,1060,1061)(596,1034,1065)(600,672,683)(602,1068,764)(604,1070,717)(605,852,691)(606,737,1071)(610,1076,1038)(611,990,1077)(612,1079,1080)(613,1081,1082)(616,888,815)(617,913,1016)(618,1085,1086)(620,780,1087)(624,1089,1083)(625,1090,1091)(628,1094,909)(630,1096,988)(631,1098,1013)(632,1099,700)(635,1102,1103)(637,1105,654)(641,1108,1069)(643,755,1111)(645,1022,950)(655,1116,964)(660,1121,1122)(663,1125,1104)(665,1127,1075)(666,970,1128)(669,939,1132)(671,1133,1135)(674,1097,1138)(677,1062,1032)(679,924,1140)(681,690,1142)(684,1144,765)(696,1151,1152)(697,1153,1028)(699,1154,972)(703,1157,1158)(705,1160,1161)(711,1165,1166)(712,1101,1167)(714,1019,1168)(723,986,1126)(727,1129,1084)(732,1173,1174)(734,1175,1176)(739,1180,803)(741,772,1183)(745,1185,819)(746,1141,940)(747,1072,1107)(750,897,1186)(769,1197,784)(771,788,1050)(775,937,1074)(777,1119,1182)(779,1201,999)(782,1204,955)(787,1205,1025)(789,1114,1170)(790,1208,1209)(791,1210,1042)(792,1106,1172)(793,1002,1211)(794,1171,1143)(795,1212,1214)(796,1169,1150)(797,806,1000)(800,1015,1216)(801,941,1078)(805,812,1218)(809,1057,1221)(814,1049,1224)(816,1179,1136)(820,1227,1178)(823,1230,1232)(826,1124,960)(827,1233,1033)(828,982,1123)(831,1234,1145)(834,1235,1117)(836,1236,994)(842,1239,1148)(846,1241,1202)(849,1187,1206)(851,1044,1244)(857,1247,1248)(865,1250,1251)(868,1254,1255)(873,1257,1258)(874,1237,1259)(884,1262,1263)(887,1265,929)(894,1131,1088)(896,1113,1269)(900,1177,1270)(903,981,1261)(904,1095,1130)(905,1272,1273)(907,1215,1196)(908,1223,1253)(912,1109,1274)(917,1137,1243)(919,1045,1276)(922,1100,1191)(926,1051,1066)(931,1229,1040)(932,998,1059)(933,1093,1271)(942,1156,1047)(949,1184,1217)(953,1283,1225)(957,1024,1030)(961,985,1192)(973,980,1231)(974,1039,1147)(977,1193,1252)(992,1163,1073)(996,1007,1249)(1001,1110,1006)(1005,1240,1067)(1008,1280,1228)(1009,1162,1189)(1010,1018,1056)(1035,1194,1159)(1036,1053,1260)(1037,1264,1290)(1063,1198,1181)(1064,1242,1295)(1092,1256,1190)(1112,1275,1297)(1115,1246,1188)(1118,1245,1268)(1139,1226,1267)(1146,1287,1238)(1149,1195,1266)(1155,1220,1300)(1164,1304,1200)(1199,1307,1281)(1203,1308,1286)(1219,1293,1310)(1222,1298,1309)(1279,1302,1282)(1284,1285,1303)(1288,1299,1292)(1294,1301,1296), (1,2,6,14,30,66,152,350,734,732,348,150,64,28,12,4)(3,9,19,41,91,213,477,548,1009,1027,1038,574,1037,785,520,981,549,248,106,247,545,1007,1050,585,974,515,973,901,1133,1053,587,265,114,264,584,1049,943,1157,948,1281,1175,1293,1060,1161,1077,999,540,244,104,243,538,996,1122,825,1093,627,1001,541,1000,1036,573,258,111,257,569,1033,623,799,1008,546,945,1020,1035,571,602,274,118,51,23,10)(5,13,29,65,151,349,733,1174,1176,736,352,154,68,32,16,8)(7,17,35,77,177,407,817,863,1132,1258,1261,881,1260,1154,844,690,321,437,192,436,860,1090,1125,889,1079,839,1005,543,572,516,232,99,200,453,888,1266,1124,662,1123,1301,1173,1302,1131,668,1130,1246,855,433,190,124,287,625,547,576,1040,915,938,856,1128,976,880,447,197,446,302,654,911,1167,1249,861,1233,1254,1127,878,898,461,204,87,39,18)(11,25,55,127,293,637,774,1014,1204,1082,1234,1135,851,431,776,1076,835,661,306,660,1120,1228,821,770,1198,1052,1074,608,1073,1290,1139,676,314,675,634,914,1275,1247,1276,1178,735,1177,1236,1263,1238,841,513,658,304,657,1118,1280,942,493,941,997,1217,804,885,1264,1134,671,311,670,916,946,802,452,887,1121,1269,934,1221,1029,807,681,317,137,59,26)(15,33,71,163,373,769,958,619,568,1032,1142,1214,975,651,620,284,122,283,387,790,1207,1016,553,1015,1272,1201,1153,858,879,840,423,185,395,800,1215,1013,552,249,551,1010,731,1030,566,255,565,963,1206,787,385,210,473,913,862,883,1168,1224,1232,1025,562,984,1213,795,392,239,102,238,529,689,1091,1208,1105,1022,558,531,988,805,398,173,75,34)(20,44,97,227,506,419,182,79,181,416,828,1041,768,1196,1185,966,1257,1307,1230,1170,720,342,719,884,449,198,448,751,362,370,764,435,191,434,857,718,341,717,1169,1273,1310,1255,1094,1186,1187,752,1004,894,456,202,86,201,454,630,289,125,54,24,53,121,280,614,640,294,308,665,653,838,1237,1251,918,688,669,310,318,683,526,236,101,45)(21,46,103,240,532,833,937,490,219,489,664,1126,1229,822,412,179,411,650,300,649,372,162,371,765,1194,1199,771,374,389,792,783,696,326,336,711,810,794,391,399,806,1219,1189,755,364,158,363,692,322,691,459,203,458,843,1240,1129,667,613,279,612,1078,891,581,262,113,49,22,48,109,253,560,656,1117,969,1102,1137,673,554,250,107,47)(27,61,141,325,695,827,415,826,847,1239,951,992,535,241,417,831,507,960,702,1156,1278,929,484,409,819,1226,830,1144,1303,1244,1066,597,709,408,522,626,1092,1003,1103,738,351,737,968,1043,977,517,621,462,701,487,932,1265,1299,1111,893,1268,897,460,578,1044,1291,1163,707,1095,629,896,457,263,583,1047,1065,1274,906,904,465,903,710,335,145,62)(31,69,157,361,586,1051,1235,910,876,590,603,985,524,235,523,471,208,470,758,1191,1305,1253,866,1252,1300,1115,647,1114,1212,1202,779,380,763,1193,1165,952,550,438,865,730,347,729,874,444,570,1034,1152,1190,756,404,814,1223,1209,1150,694,1149,1304,1256,872,1241,1306,1192,761,429,188,428,618,282,617,922,478,502,869,850,1243,998,539,369,161,70)(36,80,183,420,834,679,316,165,377,775,1011,1262,979,1166,1063,594,1062,1294,1164,708,333,144,332,705,797,393,796,956,744,749,1055,789,386,788,703,331,143,330,700,1155,1282,950,497,949,1151,1089,1248,1031,801,396,172,295,641,917,474,211,90,40,89,207,467,483,216,92,108,252,237,528,986,1084,616,281,256,110,119,276,606,426,187,81)(37,82,189,430,724,1140,1231,823,413,557,251,556,1019,987,772,375,324,234,100,233,518,360,750,609,1075,1296,1104,636,759,925,643,296,128,138,319,684,1070,760,512,970,1279,939,491,745,356,624,286,123,285,299,397,803,1087,1028,564,254,563,466,905,1271,1108,728,451,199,85,38,84,195,442,537,242,536,994,1045,579,261,527,439,193,83)(42,52,120,277,607,1072,837,561,1024,567,824,1181,740,912,472,209,231,98,230,511,967,648,334,443,873,808,1220,931,486,344,722,394,171,74,170,390,793,853,432,852,1061,947,886,450,848,791,388,169,73,168,384,716,340,599,1067,1200,773,868,440,327,693,1085,635,292,126,291,186,424,842,742,1184,902,559,1018,555,920,940,492,220,94)(43,95,222,496,816,406,815,754,983,1026,1227,936,859,1172,726,1042,577,260,112,259,376,164,174,400,246,105,245,542,1002,725,1171,882,1080,1270,1021,1086,766,778,379,777,593,269,116,50,115,266,588,533,323,140,60,139,320,687,358,747,455,704,1159,972,514,971,1012,633,1101,1162,706,418,746,357,652,301,131,56,130,298,582,503,225,96)(57,132,303,655,957,504,829,1110,642,1109,1158,1259,933,488,218,93,217,485,698,405,176,76,175,401,809,820,410,178,194,441,427,849,715,721,907,468,445,196,205,463,900,782,382,167,72,166,378,713,598,272,117,271,519,980,1250,1160,1148,686,1147,895,589,1056,674,313,135,58,134,309,666,762,1099,959,1180,1183,1096,962,757,663,307,133)(63,147,339,267,530,495,221,494,525,978,1098,1284,953,500,223,499,580,944,1058,1292,1277,927,482,215,481,926,498,811,1222,993,1197,924,480,214,479,923,1205,1182,741,354,153,353,739,1179,1216,1054,605,275,604,1069,1218,1048,1203,781,592,1059,601,273,600,991,1289,1285,954,990,534,596,270,595,1064,1288,965,1083,615,611,278,610,505,226,343,148)(67,155,355,743,890,1267,995,682,1143,892,899,1242,846,425,845,812,402,680,1141,1283,1311,1309,1210,1287,964,509,228,508,961,1286,1188,753,1023,1146,685,1145,864,646,727,346,149,345,723,678,877,1113,644,1112,1017,767,1195,1298,1100,632,290,631,1097,1297,1211,1308,1312,1295,1107,639,383,784,909,469,908,1225,818,832,1106,638,930,1245,854,748,359,156)(78,88,206,464,305,659,1119,871,989,875,575,1039,1071,935,813,403,422,184,421,836,510,229,136,315,677,1068,1116,714,338,146,337,712,368,160,367,268,591,1057,786,622,1088,982,521,798,955,501,224,366,159,365,699,329,142,328,697,1138,921,645,297,129,288,628,919,476,212,475,381,780,1081,928,1006,544,870,1046,867,1136,672,312,414,180) >;
 
Copy content gap:G := Group( (1,3,5)(2,7,8)(4,11,13)(6,15,16)(9,20,21)(10,22,24)(12,27,29)(14,31,32)(17,36,37)(18,38,40)(19,42,43)(23,50,52)(25,56,57)(26,58,60)(28,63,65)(30,67,68)(33,72,73)(34,74,76)(35,78,79)(39,86,88)(41,92,93)(44,98,99)(45,100,102)(46,104,105)(47,106,108)(48,110,111)(49,112,114)(51,117,119)(53,122,123)(54,124,126)(55,128,129)(59,136,138)(61,142,143)(62,144,146)(64,149,151)(66,153,154)(69,158,159)(70,160,162)(71,164,165)(75,172,174)(77,178,179)(80,184,185)(81,186,188)(82,190,191)(83,192,194)(84,196,197)(85,198,200)(87,203,205)(89,208,209)(90,210,212)(91,214,215)(94,219,221)(95,223,211)(96,224,226)(97,228,229)(101,235,237)(103,241,242)(107,249,251)(109,254,255)(113,261,263)(115,267,268)(116,183,270)(118,273,275)(120,278,279)(121,281,282)(125,288,290)(127,294,295)(130,299,265)(131,300,302)(132,304,305)(133,306,308)(134,310,311)(135,312,314)(137,316,318)(139,321,322)(140,243,324)(141,326,327)(145,334,336)(147,340,341)(148,342,344)(150,347,349)(152,351,352)(155,356,357)(156,358,360)(157,362,271)(161,218,370)(163,374,375)(166,379,380)(167,381,383)(168,385,386)(169,387,389)(170,391,392)(171,393,395)(173,397,399)(175,402,403)(176,404,406)(177,408,409)(180,413,415)(181,417,405)(182,418,335)(187,425,427)(189,431,432)(193,438,440)(195,443,444)(199,450,452)(201,325,455)(202,378,457)(204,460,462)(206,465,466)(207,468,469)(213,478,238)(216,245,484)(217,486,487)(220,491,493)(222,497,498)(225,502,504)(227,451,507)(230,512,369)(231,513,514)(232,515,517)(233,519,520)(234,521,522)(236,525,527)(239,530,531)(240,533,534)(244,539,541)(246,543,544)(247,546,547)(248,548,550)(250,553,555)(252,558,559)(253,561,562)(256,567,568)(257,570,571)(258,572,574)(259,575,576)(260,276,578)(262,580,582)(264,585,586)(266,589,590)(269,592,594)(272,597,599)(274,284,603)(277,608,609)(280,537,615)(283,619,505)(285,621,622)(286,623,488)(287,626,627)(289,629,430)(291,633,634)(292,361,636)(293,638,639)(296,642,644)(297,388,646)(298,647,648)(301,651,653)(303,500,656)(307,662,664)(309,667,668)(313,673,595)(315,678,390)(317,680,682)(319,685,686)(320,688,689)(323,693,694)(328,459,676)(329,698,569)(330,701,607)(331,702,704)(332,706,707)(333,492,709)(337,549,713)(338,657,411)(339,715,556)(343,564,721)(345,724,725)(346,726,728)(348,731,733)(350,735,736)(353,740,526)(354,614,742)(355,744,458)(359,412,749)(363,752,753)(364,754,481)(365,756,757)(366,758,759)(367,760,761)(368,762,763)(371,601,766)(372,767,768)(373,675,770)(376,773,774)(377,776,649)(382,781,783)(384,785,786)(394,798,799)(396,692,802)(398,804,658)(400,807,808)(401,810,811)(407,818,428)(410,434,821)(414,824,825)(416,829,830)(419,832,833)(420,722,835)(421,837,748)(422,540,838)(423,839,841)(424,843,844)(426,847,848)(429,695,850)(433,854,856)(435,858,859)(436,861,862)(437,863,864)(439,866,867)(441,869,870)(442,871,872)(445,875,876)(446,877,878)(447,879,881)(448,882,883)(449,463,885)(453,889,890)(454,891,892)(456,893,895)(461,471,899)(464,901,902)(467,853,906)(470,910,710)(472,911,822)(473,914,915)(474,916,716)(475,918,584)(476,743,920)(477,751,921)(479,650,886)(480,720,925)(482,640,659)(483,928,738)(485,579,930)(489,934,935)(490,936,938)(494,943,944)(495,945,946)(496,947,948)(499,951,952)(501,954,719)(503,817,956)(506,958,959)(508,708,962)(509,963,965)(510,845,966)(511,968,969)(516,975,976)(518,978,979)(523,983,967)(524,984,840)(528,778,855)(529,987,813)(532,989,729)(535,991,993)(536,598,995)(538,923,997)(542,1003,1004)(551,1011,1012)(552,661,1014)(554,652,1017)(557,1020,1021)(560,1023,687)(563,1026,1027)(565,1029,670)(566,971,1031)(577,1041,1043)(581,730,1046)(583,1048,927)(587,1052,1054)(588,1055,898)(591,718,1058)(593,1060,1061)(596,1034,1065)(600,672,683)(602,1068,764)(604,1070,717)(605,852,691)(606,737,1071)(610,1076,1038)(611,990,1077)(612,1079,1080)(613,1081,1082)(616,888,815)(617,913,1016)(618,1085,1086)(620,780,1087)(624,1089,1083)(625,1090,1091)(628,1094,909)(630,1096,988)(631,1098,1013)(632,1099,700)(635,1102,1103)(637,1105,654)(641,1108,1069)(643,755,1111)(645,1022,950)(655,1116,964)(660,1121,1122)(663,1125,1104)(665,1127,1075)(666,970,1128)(669,939,1132)(671,1133,1135)(674,1097,1138)(677,1062,1032)(679,924,1140)(681,690,1142)(684,1144,765)(696,1151,1152)(697,1153,1028)(699,1154,972)(703,1157,1158)(705,1160,1161)(711,1165,1166)(712,1101,1167)(714,1019,1168)(723,986,1126)(727,1129,1084)(732,1173,1174)(734,1175,1176)(739,1180,803)(741,772,1183)(745,1185,819)(746,1141,940)(747,1072,1107)(750,897,1186)(769,1197,784)(771,788,1050)(775,937,1074)(777,1119,1182)(779,1201,999)(782,1204,955)(787,1205,1025)(789,1114,1170)(790,1208,1209)(791,1210,1042)(792,1106,1172)(793,1002,1211)(794,1171,1143)(795,1212,1214)(796,1169,1150)(797,806,1000)(800,1015,1216)(801,941,1078)(805,812,1218)(809,1057,1221)(814,1049,1224)(816,1179,1136)(820,1227,1178)(823,1230,1232)(826,1124,960)(827,1233,1033)(828,982,1123)(831,1234,1145)(834,1235,1117)(836,1236,994)(842,1239,1148)(846,1241,1202)(849,1187,1206)(851,1044,1244)(857,1247,1248)(865,1250,1251)(868,1254,1255)(873,1257,1258)(874,1237,1259)(884,1262,1263)(887,1265,929)(894,1131,1088)(896,1113,1269)(900,1177,1270)(903,981,1261)(904,1095,1130)(905,1272,1273)(907,1215,1196)(908,1223,1253)(912,1109,1274)(917,1137,1243)(919,1045,1276)(922,1100,1191)(926,1051,1066)(931,1229,1040)(932,998,1059)(933,1093,1271)(942,1156,1047)(949,1184,1217)(953,1283,1225)(957,1024,1030)(961,985,1192)(973,980,1231)(974,1039,1147)(977,1193,1252)(992,1163,1073)(996,1007,1249)(1001,1110,1006)(1005,1240,1067)(1008,1280,1228)(1009,1162,1189)(1010,1018,1056)(1035,1194,1159)(1036,1053,1260)(1037,1264,1290)(1063,1198,1181)(1064,1242,1295)(1092,1256,1190)(1112,1275,1297)(1115,1246,1188)(1118,1245,1268)(1139,1226,1267)(1146,1287,1238)(1149,1195,1266)(1155,1220,1300)(1164,1304,1200)(1199,1307,1281)(1203,1308,1286)(1219,1293,1310)(1222,1298,1309)(1279,1302,1282)(1284,1285,1303)(1288,1299,1292)(1294,1301,1296), (1,2,6,14,30,66,152,350,734,732,348,150,64,28,12,4)(3,9,19,41,91,213,477,548,1009,1027,1038,574,1037,785,520,981,549,248,106,247,545,1007,1050,585,974,515,973,901,1133,1053,587,265,114,264,584,1049,943,1157,948,1281,1175,1293,1060,1161,1077,999,540,244,104,243,538,996,1122,825,1093,627,1001,541,1000,1036,573,258,111,257,569,1033,623,799,1008,546,945,1020,1035,571,602,274,118,51,23,10)(5,13,29,65,151,349,733,1174,1176,736,352,154,68,32,16,8)(7,17,35,77,177,407,817,863,1132,1258,1261,881,1260,1154,844,690,321,437,192,436,860,1090,1125,889,1079,839,1005,543,572,516,232,99,200,453,888,1266,1124,662,1123,1301,1173,1302,1131,668,1130,1246,855,433,190,124,287,625,547,576,1040,915,938,856,1128,976,880,447,197,446,302,654,911,1167,1249,861,1233,1254,1127,878,898,461,204,87,39,18)(11,25,55,127,293,637,774,1014,1204,1082,1234,1135,851,431,776,1076,835,661,306,660,1120,1228,821,770,1198,1052,1074,608,1073,1290,1139,676,314,675,634,914,1275,1247,1276,1178,735,1177,1236,1263,1238,841,513,658,304,657,1118,1280,942,493,941,997,1217,804,885,1264,1134,671,311,670,916,946,802,452,887,1121,1269,934,1221,1029,807,681,317,137,59,26)(15,33,71,163,373,769,958,619,568,1032,1142,1214,975,651,620,284,122,283,387,790,1207,1016,553,1015,1272,1201,1153,858,879,840,423,185,395,800,1215,1013,552,249,551,1010,731,1030,566,255,565,963,1206,787,385,210,473,913,862,883,1168,1224,1232,1025,562,984,1213,795,392,239,102,238,529,689,1091,1208,1105,1022,558,531,988,805,398,173,75,34)(20,44,97,227,506,419,182,79,181,416,828,1041,768,1196,1185,966,1257,1307,1230,1170,720,342,719,884,449,198,448,751,362,370,764,435,191,434,857,718,341,717,1169,1273,1310,1255,1094,1186,1187,752,1004,894,456,202,86,201,454,630,289,125,54,24,53,121,280,614,640,294,308,665,653,838,1237,1251,918,688,669,310,318,683,526,236,101,45)(21,46,103,240,532,833,937,490,219,489,664,1126,1229,822,412,179,411,650,300,649,372,162,371,765,1194,1199,771,374,389,792,783,696,326,336,711,810,794,391,399,806,1219,1189,755,364,158,363,692,322,691,459,203,458,843,1240,1129,667,613,279,612,1078,891,581,262,113,49,22,48,109,253,560,656,1117,969,1102,1137,673,554,250,107,47)(27,61,141,325,695,827,415,826,847,1239,951,992,535,241,417,831,507,960,702,1156,1278,929,484,409,819,1226,830,1144,1303,1244,1066,597,709,408,522,626,1092,1003,1103,738,351,737,968,1043,977,517,621,462,701,487,932,1265,1299,1111,893,1268,897,460,578,1044,1291,1163,707,1095,629,896,457,263,583,1047,1065,1274,906,904,465,903,710,335,145,62)(31,69,157,361,586,1051,1235,910,876,590,603,985,524,235,523,471,208,470,758,1191,1305,1253,866,1252,1300,1115,647,1114,1212,1202,779,380,763,1193,1165,952,550,438,865,730,347,729,874,444,570,1034,1152,1190,756,404,814,1223,1209,1150,694,1149,1304,1256,872,1241,1306,1192,761,429,188,428,618,282,617,922,478,502,869,850,1243,998,539,369,161,70)(36,80,183,420,834,679,316,165,377,775,1011,1262,979,1166,1063,594,1062,1294,1164,708,333,144,332,705,797,393,796,956,744,749,1055,789,386,788,703,331,143,330,700,1155,1282,950,497,949,1151,1089,1248,1031,801,396,172,295,641,917,474,211,90,40,89,207,467,483,216,92,108,252,237,528,986,1084,616,281,256,110,119,276,606,426,187,81)(37,82,189,430,724,1140,1231,823,413,557,251,556,1019,987,772,375,324,234,100,233,518,360,750,609,1075,1296,1104,636,759,925,643,296,128,138,319,684,1070,760,512,970,1279,939,491,745,356,624,286,123,285,299,397,803,1087,1028,564,254,563,466,905,1271,1108,728,451,199,85,38,84,195,442,537,242,536,994,1045,579,261,527,439,193,83)(42,52,120,277,607,1072,837,561,1024,567,824,1181,740,912,472,209,231,98,230,511,967,648,334,443,873,808,1220,931,486,344,722,394,171,74,170,390,793,853,432,852,1061,947,886,450,848,791,388,169,73,168,384,716,340,599,1067,1200,773,868,440,327,693,1085,635,292,126,291,186,424,842,742,1184,902,559,1018,555,920,940,492,220,94)(43,95,222,496,816,406,815,754,983,1026,1227,936,859,1172,726,1042,577,260,112,259,376,164,174,400,246,105,245,542,1002,725,1171,882,1080,1270,1021,1086,766,778,379,777,593,269,116,50,115,266,588,533,323,140,60,139,320,687,358,747,455,704,1159,972,514,971,1012,633,1101,1162,706,418,746,357,652,301,131,56,130,298,582,503,225,96)(57,132,303,655,957,504,829,1110,642,1109,1158,1259,933,488,218,93,217,485,698,405,176,76,175,401,809,820,410,178,194,441,427,849,715,721,907,468,445,196,205,463,900,782,382,167,72,166,378,713,598,272,117,271,519,980,1250,1160,1148,686,1147,895,589,1056,674,313,135,58,134,309,666,762,1099,959,1180,1183,1096,962,757,663,307,133)(63,147,339,267,530,495,221,494,525,978,1098,1284,953,500,223,499,580,944,1058,1292,1277,927,482,215,481,926,498,811,1222,993,1197,924,480,214,479,923,1205,1182,741,354,153,353,739,1179,1216,1054,605,275,604,1069,1218,1048,1203,781,592,1059,601,273,600,991,1289,1285,954,990,534,596,270,595,1064,1288,965,1083,615,611,278,610,505,226,343,148)(67,155,355,743,890,1267,995,682,1143,892,899,1242,846,425,845,812,402,680,1141,1283,1311,1309,1210,1287,964,509,228,508,961,1286,1188,753,1023,1146,685,1145,864,646,727,346,149,345,723,678,877,1113,644,1112,1017,767,1195,1298,1100,632,290,631,1097,1297,1211,1308,1312,1295,1107,639,383,784,909,469,908,1225,818,832,1106,638,930,1245,854,748,359,156)(78,88,206,464,305,659,1119,871,989,875,575,1039,1071,935,813,403,422,184,421,836,510,229,136,315,677,1068,1116,714,338,146,337,712,368,160,367,268,591,1057,786,622,1088,982,521,798,955,501,224,366,159,365,699,329,142,328,697,1138,921,645,297,129,288,628,919,476,212,475,381,780,1081,928,1006,544,870,1046,867,1136,672,312,414,180) );
 
Copy content sage:G = PermutationGroup(['(1,3,5)(2,7,8)(4,11,13)(6,15,16)(9,20,21)(10,22,24)(12,27,29)(14,31,32)(17,36,37)(18,38,40)(19,42,43)(23,50,52)(25,56,57)(26,58,60)(28,63,65)(30,67,68)(33,72,73)(34,74,76)(35,78,79)(39,86,88)(41,92,93)(44,98,99)(45,100,102)(46,104,105)(47,106,108)(48,110,111)(49,112,114)(51,117,119)(53,122,123)(54,124,126)(55,128,129)(59,136,138)(61,142,143)(62,144,146)(64,149,151)(66,153,154)(69,158,159)(70,160,162)(71,164,165)(75,172,174)(77,178,179)(80,184,185)(81,186,188)(82,190,191)(83,192,194)(84,196,197)(85,198,200)(87,203,205)(89,208,209)(90,210,212)(91,214,215)(94,219,221)(95,223,211)(96,224,226)(97,228,229)(101,235,237)(103,241,242)(107,249,251)(109,254,255)(113,261,263)(115,267,268)(116,183,270)(118,273,275)(120,278,279)(121,281,282)(125,288,290)(127,294,295)(130,299,265)(131,300,302)(132,304,305)(133,306,308)(134,310,311)(135,312,314)(137,316,318)(139,321,322)(140,243,324)(141,326,327)(145,334,336)(147,340,341)(148,342,344)(150,347,349)(152,351,352)(155,356,357)(156,358,360)(157,362,271)(161,218,370)(163,374,375)(166,379,380)(167,381,383)(168,385,386)(169,387,389)(170,391,392)(171,393,395)(173,397,399)(175,402,403)(176,404,406)(177,408,409)(180,413,415)(181,417,405)(182,418,335)(187,425,427)(189,431,432)(193,438,440)(195,443,444)(199,450,452)(201,325,455)(202,378,457)(204,460,462)(206,465,466)(207,468,469)(213,478,238)(216,245,484)(217,486,487)(220,491,493)(222,497,498)(225,502,504)(227,451,507)(230,512,369)(231,513,514)(232,515,517)(233,519,520)(234,521,522)(236,525,527)(239,530,531)(240,533,534)(244,539,541)(246,543,544)(247,546,547)(248,548,550)(250,553,555)(252,558,559)(253,561,562)(256,567,568)(257,570,571)(258,572,574)(259,575,576)(260,276,578)(262,580,582)(264,585,586)(266,589,590)(269,592,594)(272,597,599)(274,284,603)(277,608,609)(280,537,615)(283,619,505)(285,621,622)(286,623,488)(287,626,627)(289,629,430)(291,633,634)(292,361,636)(293,638,639)(296,642,644)(297,388,646)(298,647,648)(301,651,653)(303,500,656)(307,662,664)(309,667,668)(313,673,595)(315,678,390)(317,680,682)(319,685,686)(320,688,689)(323,693,694)(328,459,676)(329,698,569)(330,701,607)(331,702,704)(332,706,707)(333,492,709)(337,549,713)(338,657,411)(339,715,556)(343,564,721)(345,724,725)(346,726,728)(348,731,733)(350,735,736)(353,740,526)(354,614,742)(355,744,458)(359,412,749)(363,752,753)(364,754,481)(365,756,757)(366,758,759)(367,760,761)(368,762,763)(371,601,766)(372,767,768)(373,675,770)(376,773,774)(377,776,649)(382,781,783)(384,785,786)(394,798,799)(396,692,802)(398,804,658)(400,807,808)(401,810,811)(407,818,428)(410,434,821)(414,824,825)(416,829,830)(419,832,833)(420,722,835)(421,837,748)(422,540,838)(423,839,841)(424,843,844)(426,847,848)(429,695,850)(433,854,856)(435,858,859)(436,861,862)(437,863,864)(439,866,867)(441,869,870)(442,871,872)(445,875,876)(446,877,878)(447,879,881)(448,882,883)(449,463,885)(453,889,890)(454,891,892)(456,893,895)(461,471,899)(464,901,902)(467,853,906)(470,910,710)(472,911,822)(473,914,915)(474,916,716)(475,918,584)(476,743,920)(477,751,921)(479,650,886)(480,720,925)(482,640,659)(483,928,738)(485,579,930)(489,934,935)(490,936,938)(494,943,944)(495,945,946)(496,947,948)(499,951,952)(501,954,719)(503,817,956)(506,958,959)(508,708,962)(509,963,965)(510,845,966)(511,968,969)(516,975,976)(518,978,979)(523,983,967)(524,984,840)(528,778,855)(529,987,813)(532,989,729)(535,991,993)(536,598,995)(538,923,997)(542,1003,1004)(551,1011,1012)(552,661,1014)(554,652,1017)(557,1020,1021)(560,1023,687)(563,1026,1027)(565,1029,670)(566,971,1031)(577,1041,1043)(581,730,1046)(583,1048,927)(587,1052,1054)(588,1055,898)(591,718,1058)(593,1060,1061)(596,1034,1065)(600,672,683)(602,1068,764)(604,1070,717)(605,852,691)(606,737,1071)(610,1076,1038)(611,990,1077)(612,1079,1080)(613,1081,1082)(616,888,815)(617,913,1016)(618,1085,1086)(620,780,1087)(624,1089,1083)(625,1090,1091)(628,1094,909)(630,1096,988)(631,1098,1013)(632,1099,700)(635,1102,1103)(637,1105,654)(641,1108,1069)(643,755,1111)(645,1022,950)(655,1116,964)(660,1121,1122)(663,1125,1104)(665,1127,1075)(666,970,1128)(669,939,1132)(671,1133,1135)(674,1097,1138)(677,1062,1032)(679,924,1140)(681,690,1142)(684,1144,765)(696,1151,1152)(697,1153,1028)(699,1154,972)(703,1157,1158)(705,1160,1161)(711,1165,1166)(712,1101,1167)(714,1019,1168)(723,986,1126)(727,1129,1084)(732,1173,1174)(734,1175,1176)(739,1180,803)(741,772,1183)(745,1185,819)(746,1141,940)(747,1072,1107)(750,897,1186)(769,1197,784)(771,788,1050)(775,937,1074)(777,1119,1182)(779,1201,999)(782,1204,955)(787,1205,1025)(789,1114,1170)(790,1208,1209)(791,1210,1042)(792,1106,1172)(793,1002,1211)(794,1171,1143)(795,1212,1214)(796,1169,1150)(797,806,1000)(800,1015,1216)(801,941,1078)(805,812,1218)(809,1057,1221)(814,1049,1224)(816,1179,1136)(820,1227,1178)(823,1230,1232)(826,1124,960)(827,1233,1033)(828,982,1123)(831,1234,1145)(834,1235,1117)(836,1236,994)(842,1239,1148)(846,1241,1202)(849,1187,1206)(851,1044,1244)(857,1247,1248)(865,1250,1251)(868,1254,1255)(873,1257,1258)(874,1237,1259)(884,1262,1263)(887,1265,929)(894,1131,1088)(896,1113,1269)(900,1177,1270)(903,981,1261)(904,1095,1130)(905,1272,1273)(907,1215,1196)(908,1223,1253)(912,1109,1274)(917,1137,1243)(919,1045,1276)(922,1100,1191)(926,1051,1066)(931,1229,1040)(932,998,1059)(933,1093,1271)(942,1156,1047)(949,1184,1217)(953,1283,1225)(957,1024,1030)(961,985,1192)(973,980,1231)(974,1039,1147)(977,1193,1252)(992,1163,1073)(996,1007,1249)(1001,1110,1006)(1005,1240,1067)(1008,1280,1228)(1009,1162,1189)(1010,1018,1056)(1035,1194,1159)(1036,1053,1260)(1037,1264,1290)(1063,1198,1181)(1064,1242,1295)(1092,1256,1190)(1112,1275,1297)(1115,1246,1188)(1118,1245,1268)(1139,1226,1267)(1146,1287,1238)(1149,1195,1266)(1155,1220,1300)(1164,1304,1200)(1199,1307,1281)(1203,1308,1286)(1219,1293,1310)(1222,1298,1309)(1279,1302,1282)(1284,1285,1303)(1288,1299,1292)(1294,1301,1296)', '(1,2,6,14,30,66,152,350,734,732,348,150,64,28,12,4)(3,9,19,41,91,213,477,548,1009,1027,1038,574,1037,785,520,981,549,248,106,247,545,1007,1050,585,974,515,973,901,1133,1053,587,265,114,264,584,1049,943,1157,948,1281,1175,1293,1060,1161,1077,999,540,244,104,243,538,996,1122,825,1093,627,1001,541,1000,1036,573,258,111,257,569,1033,623,799,1008,546,945,1020,1035,571,602,274,118,51,23,10)(5,13,29,65,151,349,733,1174,1176,736,352,154,68,32,16,8)(7,17,35,77,177,407,817,863,1132,1258,1261,881,1260,1154,844,690,321,437,192,436,860,1090,1125,889,1079,839,1005,543,572,516,232,99,200,453,888,1266,1124,662,1123,1301,1173,1302,1131,668,1130,1246,855,433,190,124,287,625,547,576,1040,915,938,856,1128,976,880,447,197,446,302,654,911,1167,1249,861,1233,1254,1127,878,898,461,204,87,39,18)(11,25,55,127,293,637,774,1014,1204,1082,1234,1135,851,431,776,1076,835,661,306,660,1120,1228,821,770,1198,1052,1074,608,1073,1290,1139,676,314,675,634,914,1275,1247,1276,1178,735,1177,1236,1263,1238,841,513,658,304,657,1118,1280,942,493,941,997,1217,804,885,1264,1134,671,311,670,916,946,802,452,887,1121,1269,934,1221,1029,807,681,317,137,59,26)(15,33,71,163,373,769,958,619,568,1032,1142,1214,975,651,620,284,122,283,387,790,1207,1016,553,1015,1272,1201,1153,858,879,840,423,185,395,800,1215,1013,552,249,551,1010,731,1030,566,255,565,963,1206,787,385,210,473,913,862,883,1168,1224,1232,1025,562,984,1213,795,392,239,102,238,529,689,1091,1208,1105,1022,558,531,988,805,398,173,75,34)(20,44,97,227,506,419,182,79,181,416,828,1041,768,1196,1185,966,1257,1307,1230,1170,720,342,719,884,449,198,448,751,362,370,764,435,191,434,857,718,341,717,1169,1273,1310,1255,1094,1186,1187,752,1004,894,456,202,86,201,454,630,289,125,54,24,53,121,280,614,640,294,308,665,653,838,1237,1251,918,688,669,310,318,683,526,236,101,45)(21,46,103,240,532,833,937,490,219,489,664,1126,1229,822,412,179,411,650,300,649,372,162,371,765,1194,1199,771,374,389,792,783,696,326,336,711,810,794,391,399,806,1219,1189,755,364,158,363,692,322,691,459,203,458,843,1240,1129,667,613,279,612,1078,891,581,262,113,49,22,48,109,253,560,656,1117,969,1102,1137,673,554,250,107,47)(27,61,141,325,695,827,415,826,847,1239,951,992,535,241,417,831,507,960,702,1156,1278,929,484,409,819,1226,830,1144,1303,1244,1066,597,709,408,522,626,1092,1003,1103,738,351,737,968,1043,977,517,621,462,701,487,932,1265,1299,1111,893,1268,897,460,578,1044,1291,1163,707,1095,629,896,457,263,583,1047,1065,1274,906,904,465,903,710,335,145,62)(31,69,157,361,586,1051,1235,910,876,590,603,985,524,235,523,471,208,470,758,1191,1305,1253,866,1252,1300,1115,647,1114,1212,1202,779,380,763,1193,1165,952,550,438,865,730,347,729,874,444,570,1034,1152,1190,756,404,814,1223,1209,1150,694,1149,1304,1256,872,1241,1306,1192,761,429,188,428,618,282,617,922,478,502,869,850,1243,998,539,369,161,70)(36,80,183,420,834,679,316,165,377,775,1011,1262,979,1166,1063,594,1062,1294,1164,708,333,144,332,705,797,393,796,956,744,749,1055,789,386,788,703,331,143,330,700,1155,1282,950,497,949,1151,1089,1248,1031,801,396,172,295,641,917,474,211,90,40,89,207,467,483,216,92,108,252,237,528,986,1084,616,281,256,110,119,276,606,426,187,81)(37,82,189,430,724,1140,1231,823,413,557,251,556,1019,987,772,375,324,234,100,233,518,360,750,609,1075,1296,1104,636,759,925,643,296,128,138,319,684,1070,760,512,970,1279,939,491,745,356,624,286,123,285,299,397,803,1087,1028,564,254,563,466,905,1271,1108,728,451,199,85,38,84,195,442,537,242,536,994,1045,579,261,527,439,193,83)(42,52,120,277,607,1072,837,561,1024,567,824,1181,740,912,472,209,231,98,230,511,967,648,334,443,873,808,1220,931,486,344,722,394,171,74,170,390,793,853,432,852,1061,947,886,450,848,791,388,169,73,168,384,716,340,599,1067,1200,773,868,440,327,693,1085,635,292,126,291,186,424,842,742,1184,902,559,1018,555,920,940,492,220,94)(43,95,222,496,816,406,815,754,983,1026,1227,936,859,1172,726,1042,577,260,112,259,376,164,174,400,246,105,245,542,1002,725,1171,882,1080,1270,1021,1086,766,778,379,777,593,269,116,50,115,266,588,533,323,140,60,139,320,687,358,747,455,704,1159,972,514,971,1012,633,1101,1162,706,418,746,357,652,301,131,56,130,298,582,503,225,96)(57,132,303,655,957,504,829,1110,642,1109,1158,1259,933,488,218,93,217,485,698,405,176,76,175,401,809,820,410,178,194,441,427,849,715,721,907,468,445,196,205,463,900,782,382,167,72,166,378,713,598,272,117,271,519,980,1250,1160,1148,686,1147,895,589,1056,674,313,135,58,134,309,666,762,1099,959,1180,1183,1096,962,757,663,307,133)(63,147,339,267,530,495,221,494,525,978,1098,1284,953,500,223,499,580,944,1058,1292,1277,927,482,215,481,926,498,811,1222,993,1197,924,480,214,479,923,1205,1182,741,354,153,353,739,1179,1216,1054,605,275,604,1069,1218,1048,1203,781,592,1059,601,273,600,991,1289,1285,954,990,534,596,270,595,1064,1288,965,1083,615,611,278,610,505,226,343,148)(67,155,355,743,890,1267,995,682,1143,892,899,1242,846,425,845,812,402,680,1141,1283,1311,1309,1210,1287,964,509,228,508,961,1286,1188,753,1023,1146,685,1145,864,646,727,346,149,345,723,678,877,1113,644,1112,1017,767,1195,1298,1100,632,290,631,1097,1297,1211,1308,1312,1295,1107,639,383,784,909,469,908,1225,818,832,1106,638,930,1245,854,748,359,156)(78,88,206,464,305,659,1119,871,989,875,575,1039,1071,935,813,403,422,184,421,836,510,229,136,315,677,1068,1116,714,338,146,337,712,368,160,367,268,591,1057,786,622,1088,982,521,798,955,501,224,366,159,365,699,329,142,328,697,1138,921,645,297,129,288,628,919,476,212,475,381,780,1081,928,1006,544,870,1046,867,1136,672,312,414,180)'])
 
Matrix group:$\left\langle \left(\begin{array}{ll}\alpha^{47} & \alpha^{42} \\ \alpha^{8} & \alpha^{63} \\ \end{array}\right), \left(\begin{array}{ll}\alpha^{13} & \alpha^{41} \\ 0 & \alpha^{67} \\ \end{array}\right), \left(\begin{array}{ll}\alpha^{40} & 0 \\ 0 & \alpha^{40} \\ \end{array}\right), \left(\begin{array}{ll}\alpha^{7} & \alpha^{78} \\ \alpha^{44} & \alpha^{58} \\ \end{array}\right), \left(\begin{array}{ll}\alpha^{46} & \alpha^{62} \\ \alpha^{35} & \alpha^{49} \\ \end{array}\right), \left(\begin{array}{ll}\alpha^{69} & \alpha^{34} \\ \alpha^{48} & \alpha^{69} \\ \end{array}\right) \right\rangle \subseteq \GL_{2}(\F_{81}) = \GL_{2}(\F_{3}[\alpha]/(\alpha^{4} + 2 \alpha^{3} + 2))$
Copy content comment:Define the group as a matrix group with coefficients in GLFq
 
Copy content magma:F:=GF(81); al:=F.1; G := MatrixGroup< 2, F | [[al^47, al^42], [al^8, al^63]],[[al^13, al^41], [0, al^67]],[[al^40, 0], [0, al^40]],[[al^7, al^78], [al^44, al^58]],[[al^46, al^62], [al^35, al^49]],[[al^69, al^34], [al^48, al^69]] >;
 
Copy content gap:G := Group([[[Z(81)^47, Z(81)^42], [Z(81)^8, Z(81)^63]],[[Z(81)^13, Z(81)^41], [0*Z(81), Z(81)^67]],[[Z(81)^40, 0*Z(81)], [0*Z(81), Z(81)^40]],[[Z(81)^7, Z(81)^78], [Z(81)^44, Z(81)^58]],[[Z(81)^46, Z(81)^62], [Z(81)^35, Z(81)^49]],[[Z(81)^69, Z(81)^34], [Z(81)^48, Z(81)^69]]]);
 
Copy content sage:F = GF(81); al = F.0; MS = MatrixSpace(F, 2, 2) G = MatrixGroup([MS([[al^47, al^42], [al^8, al^63]]), MS([[al^13, al^41], [0, al^67]]), MS([[al^40, 0], [0, al^40]]), MS([[al^7, al^78], [al^44, al^58]]), MS([[al^46, al^62], [al^35, al^49]]), MS([[al^69, al^34], [al^48, al^69]])])
 
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product

Elements of the group are displayed as matrices in $\SL(2,81)$.

Homology

Abelianization: $C_1 $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

Subgroup data has not been computed.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $85 \times 85$ character table is not available for this group.

Rational character table

The $16 \times 16$ rational character table is not available for this group.