Properties

Label 524160.a
Order \( 2^{7} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \)
Exponent \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \)
Nilpotent no
Solvable no
$\card{G^{\mathrm{ab}}}$ \( 2 \)
$\card{Z(G)}$ \( 1 \)
$\card{\Aut(G)}$ \( 2^{7} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 13 \)
$\card{\mathrm{Out}(G)}$ \( 3 \)
Perm deg. $65$
Trans deg. $65$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content magma:G := SOMinus(4, 8);
 
Copy content comment:Define the group as a permutation group
 
Copy content gap:G := Group( (1,3,10)(2,6,18)(4,13,12)(5,15,19)(7,21,26)(8,25,20)(9,27,43)(11,29,47)(14,31,50)(16,35,23)(22,28,46)(24,38,39)(30,48,42)(33,37,52)(34,44,53)(36,54,62)(40,41,56)(45,61,59)(49,51,57)(55,64,63)(58,65,60), (1,2,5,14,30,20,40,56,63,10,22,36,33,53,59,64,48,54,11,28,15,25,43,60,35,46,62,13,8,24,39,55,19,21,42,51,4,7,16,32,49,41,57,65,52,3,9,26,44,27,45,58,50,61,12,23,34,18,38,6,17,37,31), (1,4)(2,8)(3,12)(5,15)(6,20)(7,23)(10,13)(14,33)(16,26)(18,25)(21,35)(22,28)(24,34)(27,43)(29,47)(31,52)(37,50)(38,53)(39,44)(40,58)(41,60)(42,48)(45,59)(49,55)(51,63)(54,62)(56,65)(57,64), (1,4,10,3,11,12,13)(2,7,22,9,28,23,8)(5,16,36,26,15,34,24)(6,19,20,41,59,45,60)(14,32,33,44,25,18,39)(17,21,40,57,64,58,35)(27,43,38,55,30,49,53)(31,51,63,52,54,61,62)(37,42,56,65,48,50,46) );
 
Copy content sage:G = PermutationGroup(['(1,3,10)(2,6,18)(4,13,12)(5,15,19)(7,21,26)(8,25,20)(9,27,43)(11,29,47)(14,31,50)(16,35,23)(22,28,46)(24,38,39)(30,48,42)(33,37,52)(34,44,53)(36,54,62)(40,41,56)(45,61,59)(49,51,57)(55,64,63)(58,65,60)', '(1,2,5,14,30,20,40,56,63,10,22,36,33,53,59,64,48,54,11,28,15,25,43,60,35,46,62,13,8,24,39,55,19,21,42,51,4,7,16,32,49,41,57,65,52,3,9,26,44,27,45,58,50,61,12,23,34,18,38,6,17,37,31)', '(1,4)(2,8)(3,12)(5,15)(6,20)(7,23)(10,13)(14,33)(16,26)(18,25)(21,35)(22,28)(24,34)(27,43)(29,47)(31,52)(37,50)(38,53)(39,44)(40,58)(41,60)(42,48)(45,59)(49,55)(51,63)(54,62)(56,65)(57,64)', '(1,4,10,3,11,12,13)(2,7,22,9,28,23,8)(5,16,36,26,15,34,24)(6,19,20,41,59,45,60)(14,32,33,44,25,18,39)(17,21,40,57,64,58,35)(27,43,38,55,30,49,53)(31,51,63,52,54,61,62)(37,42,56,65,48,50,46)'])
 

Group information

Description:$\SOMinus(4,8)$
Order: \(524160\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(16380\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$\SL(2,64).C_6$, of order \(1572480\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 13 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$, $\SL(2,64)$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$1$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian, almost simple, and nonsolvable.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 5 6 7 9 13 14 18 21 63 65
Elements 1 4615 4160 32760 8064 29120 12480 12480 24192 112320 87360 24960 74880 96768 524160
Conjugacy classes   1 2 1 1 1 1 3 3 3 3 3 3 9 12 46
Divisions 1 2 1 1 1 1 1 1 1 1 1 1 1 1 15
Autjugacy classes 1 2 1 1 1 1 1 1 1 1 1 1 3 4 20

Copy content comment:Compute statistics about the characters of G
 
Copy content magma:// Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content gap:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content sage:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i character_degrees = [c[0] for c in G.character_table()] [[n, character_degrees.count(n)] for n in set(character_degrees)]
 
Copy content sage_gap:G.CharacterDegrees()
 

Dimension 1 64 65 126 130 195 378 390 1170 1512
Irr. complex chars.   2 2 14 16 12 0 0 0 0 0 46
Irr. rational chars. 2 2 2 1 0 4 1 1 1 1 15

Minimal presentations

Permutation degree:$65$
Transitive degree:$65$
Rank: $2$
Inequivalent generating pairs: $128697$

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 64 64 64
Arbitrary 64 64 64

Constructions

Show commands: Gap / Magma / SageMath


Groups of Lie type:$\SOMinus(4,8)$, $\GOMinus(4,8)$, $\PSOMinus(4,8)$, $\PGOMinus(4,8)$, $\CSOMinus(4,8)$
Permutation group:Degree $65$ $\langle(1,3,10)(2,6,18)(4,13,12)(5,15,19)(7,21,26)(8,25,20)(9,27,43)(11,29,47) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 65 | (1,3,10)(2,6,18)(4,13,12)(5,15,19)(7,21,26)(8,25,20)(9,27,43)(11,29,47)(14,31,50)(16,35,23)(22,28,46)(24,38,39)(30,48,42)(33,37,52)(34,44,53)(36,54,62)(40,41,56)(45,61,59)(49,51,57)(55,64,63)(58,65,60), (1,2,5,14,30,20,40,56,63,10,22,36,33,53,59,64,48,54,11,28,15,25,43,60,35,46,62,13,8,24,39,55,19,21,42,51,4,7,16,32,49,41,57,65,52,3,9,26,44,27,45,58,50,61,12,23,34,18,38,6,17,37,31), (1,4)(2,8)(3,12)(5,15)(6,20)(7,23)(10,13)(14,33)(16,26)(18,25)(21,35)(22,28)(24,34)(27,43)(29,47)(31,52)(37,50)(38,53)(39,44)(40,58)(41,60)(42,48)(45,59)(49,55)(51,63)(54,62)(56,65)(57,64), (1,4,10,3,11,12,13)(2,7,22,9,28,23,8)(5,16,36,26,15,34,24)(6,19,20,41,59,45,60)(14,32,33,44,25,18,39)(17,21,40,57,64,58,35)(27,43,38,55,30,49,53)(31,51,63,52,54,61,62)(37,42,56,65,48,50,46) >;
 
Copy content gap:G := Group( (1,3,10)(2,6,18)(4,13,12)(5,15,19)(7,21,26)(8,25,20)(9,27,43)(11,29,47)(14,31,50)(16,35,23)(22,28,46)(24,38,39)(30,48,42)(33,37,52)(34,44,53)(36,54,62)(40,41,56)(45,61,59)(49,51,57)(55,64,63)(58,65,60), (1,2,5,14,30,20,40,56,63,10,22,36,33,53,59,64,48,54,11,28,15,25,43,60,35,46,62,13,8,24,39,55,19,21,42,51,4,7,16,32,49,41,57,65,52,3,9,26,44,27,45,58,50,61,12,23,34,18,38,6,17,37,31), (1,4)(2,8)(3,12)(5,15)(6,20)(7,23)(10,13)(14,33)(16,26)(18,25)(21,35)(22,28)(24,34)(27,43)(29,47)(31,52)(37,50)(38,53)(39,44)(40,58)(41,60)(42,48)(45,59)(49,55)(51,63)(54,62)(56,65)(57,64), (1,4,10,3,11,12,13)(2,7,22,9,28,23,8)(5,16,36,26,15,34,24)(6,19,20,41,59,45,60)(14,32,33,44,25,18,39)(17,21,40,57,64,58,35)(27,43,38,55,30,49,53)(31,51,63,52,54,61,62)(37,42,56,65,48,50,46) );
 
Copy content sage:G = PermutationGroup(['(1,3,10)(2,6,18)(4,13,12)(5,15,19)(7,21,26)(8,25,20)(9,27,43)(11,29,47)(14,31,50)(16,35,23)(22,28,46)(24,38,39)(30,48,42)(33,37,52)(34,44,53)(36,54,62)(40,41,56)(45,61,59)(49,51,57)(55,64,63)(58,65,60)', '(1,2,5,14,30,20,40,56,63,10,22,36,33,53,59,64,48,54,11,28,15,25,43,60,35,46,62,13,8,24,39,55,19,21,42,51,4,7,16,32,49,41,57,65,52,3,9,26,44,27,45,58,50,61,12,23,34,18,38,6,17,37,31)', '(1,4)(2,8)(3,12)(5,15)(6,20)(7,23)(10,13)(14,33)(16,26)(18,25)(21,35)(22,28)(24,34)(27,43)(29,47)(31,52)(37,50)(38,53)(39,44)(40,58)(41,60)(42,48)(45,59)(49,55)(51,63)(54,62)(56,65)(57,64)', '(1,4,10,3,11,12,13)(2,7,22,9,28,23,8)(5,16,36,26,15,34,24)(6,19,20,41,59,45,60)(14,32,33,44,25,18,39)(17,21,40,57,64,58,35)(27,43,38,55,30,49,53)(31,51,63,52,54,61,62)(37,42,56,65,48,50,46)'])
 
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: $\SL(2,64)$ $\,\rtimes\,$ $C_2$ more information
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product

Elements of the group are displayed as matrices in $\SOMinus(4,8)$.

Homology

Abelianization: $C_{2} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_1$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 885500 subgroups in 127 conjugacy classes, 3 normal, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_1$ $G/Z \simeq$ $\SOMinus(4,8)$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $\SL(2,64)$ $G/G' \simeq$ $C_2$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_1$ $G/\Phi \simeq$ $\SOMinus(4,8)$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_1$ $G/\operatorname{Fit} \simeq$ $\SOMinus(4,8)$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_1$ $G/R \simeq$ $\SOMinus(4,8)$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $\SL(2,64)$ $G/\operatorname{soc} \simeq$ $C_2$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^3\wr C_2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_9$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5$
7-Sylow subgroup: $P_{ 7 } \simeq$ $C_7$
13-Sylow subgroup: $P_{ 13 } \simeq$ $C_{13}$

Subgroup diagram and profile

For the default diagram, subgroups are sorted vertically by the number of prime divisors (counted with multiplicity) in their orders.
To see subgroups sorted vertically by order instead, check this box.
Sorry, your browser does not support the subgroup diagram.

Subgroup information

Click on a subgroup in the diagram to see information about it.

Series

Derived series $\SOMinus(4,8)$ $\rhd$ $\SL(2,64)$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $\SOMinus(4,8)$ $\rhd$ $\SL(2,64)$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $\SOMinus(4,8)$ $\rhd$ $\SL(2,64)$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

See the $46 \times 46$ character table. Alternatively, you may search for characters of this group with desired properties.

Rational character table

1A 2A 2B 3A 4A 5A 6A 7A 9A 13A 14A 18A 21A 63A 65A
Size 1 520 4095 4160 32760 8064 29120 12480 12480 24192 112320 87360 24960 74880 96768
2 P 1A 1A 1A 3A 2B 5A 3A 7A 9A 13A 7A 9A 21A 63A 65A
3 P 1A 2A 2B 1A 4A 5A 2A 7A 3A 13A 14A 6A 7A 21A 65A
5 P 1A 2A 2B 3A 4A 1A 6A 7A 9A 13A 14A 18A 21A 63A 13A
7 P 1A 2A 2B 3A 4A 5A 6A 1A 9A 13A 2A 18A 3A 9A 65A
13 P 1A 2A 2B 3A 4A 5A 6A 7A 9A 1A 14A 18A 21A 63A 5A
524160.a.1a 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
524160.a.1b 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
524160.a.64a 64 8 0 1 0 1 1 1 1 1 1 1 1 1 1
524160.a.64b 64 8 0 1 0 1 1 1 1 1 1 1 1 1 1
524160.a.65a 65 7 1 2 1 0 2 2 1 0 0 1 2 1 0
524160.a.65b 65 7 1 2 1 0 2 2 1 0 0 1 2 1 0
524160.a.65c 195 27 3 6 3 0 0 1 6 0 1 0 1 1 0
524160.a.65d 195 21 3 3 3 0 3 6 0 0 0 0 3 0 0
524160.a.65e 195 21 3 3 3 0 3 6 0 0 0 0 3 0 0
524160.a.65f 195 27 3 6 3 0 0 1 6 0 1 0 1 1 0
524160.a.126a 126 0 2 0 0 1 0 0 0 4 0 0 0 0 1
524160.a.126b 378 0 6 0 0 12 0 0 0 1 0 0 0 0 1
524160.a.126c 1512 0 24 0 0 12 0 0 0 4 0 0 0 0 1
524160.a.130a 390 0 6 12 0 0 0 2 6 0 0 0 2 1 0
524160.a.130b 1170 0 18 18 0 0 0 6 0 0 0 0 3 0 0