| Presentation: |
${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r \mid b^{6}= \!\cdots\! \rangle}$
|
magma:G := PCGroup([28, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 91522507776, 1921413900561, 141, 3986979476930, 396417237891, 1004578362847, 469203637451, 311, 4736573143684, 2487044911712, 220973253540, 13680231156, 4954064957861, 2779087803441, 1050830202805, 442611806201, 257245414725, 481, 9717555643494, 3417651434770, 2406250518230, 265065666298, 200049041030, 48348916398, 7929191235847, 1994119317155, 1109621298303, 941742108251, 182203763063, 204134034195, 54866683375, 651, 397973786120, 5036135731236, 1265961191104, 153643625948, 418888935480, 5190758644, 4703506592, 6490471912, 12427658772489, 746993425957, 3098543965505, 1192417874013, 197886770041, 227029344789, 28600751405, 5094835461, 9405549339658, 1939535549990, 2687430493506, 1240453885534, 42002231162, 258022954262, 3232142322, 2222747502, 32348576186, 3342, 906, 216710774795, 13377208359, 3298819571779, 276908212319, 528734158971, 43159, 2951, 9674121719820, 908017883176, 3498998840132, 1339961098208, 303640646524, 86973906808, 151275563892, 2815639216, 37007382284, 11212, 1076, 18728091689, 2261417066565, 1280016654433, 1300562045, 320004163737, 601510069, 300755153, 9701, 11177309445134, 1916437420842, 3555136368070, 1168346538338, 265969751166, 302469511834, 194596819382, 30424464210, 11366429998, 25578715946, 352795254, 5808950, 1246, 19124403830799, 7887202713643, 1574202212423, 731586035811, 731440152703, 370363048091, 91430019283, 45789327599, 11510037771, 64807, 8327775, 20363373585424, 11773363101740, 4721499307464, 430374874596, 291905773952, 238628948476, 99889559800, 3150111092, 893676912, 118649932, 460307528, 10093456, 1488384, 550216, 1416, 9896458715153, 4937248899117, 4927160254537, 129125, 207681159297, 13934749, 12505, 14158601899026, 9272726496814, 1958410384970, 860021428326, 41528073346, 446226482846, 222937349562, 53906342998, 54879213554, 133757838, 516414826, 11606466, 189854186, 188810430, 16426, 1586, 11357249863727, 1384541921355, 3530956903, 914298470531, 1765478559, 114288384187, 114287309015, 209019123, 2903339, 484195, 13907, 25290436727828, 9316840732464, 1482012435532, 958573292648, 840804419076, 585996735904, 263499377084, 42254432856, 16380984052, 10854611984, 516668844, 3810596, 208928572, 208865096, 106308, 60500, 1756, 6180270243861, 662171811889, 2152062173261, 1011857645673, 505321377925, 10218937505, 818442429, 125856901849, 159667445, 95800593, 19160365, 3193701, 89173, 37485, 6738099830834, 1592222714958, 8120211562, 1051442746502, 1015397538, 131431518142, 131430343514, 13354230, 60093230, 10015846, 278678, 34241194229783, 1445186469939, 7183586156623, 2230427566187, 12266053767, 296026988707, 9560807615, 73352144091, 33916797175, 33965568275, 188117295, 1416103271, 236307871, 532695, 194063, 2185927, 4300824, 4891041792052, 26475724880, 2281092710508, 37623398536, 286355865764, 285136588992, 72459878620, 2351462648, 587865904, 16330016, 2722072, 454128, 76184, 5460580909081, 5634728386613, 5995375067217, 111872237677, 1217454644361, 530889655461, 15459225793, 146385028829, 67757534457, 18296119573, 16982784305, 2779516009, 472373409, 5713817, 13052113, 1092585, 24127639216154, 4498763286582, 8180860197970, 339155196014, 1271215185546, 414673136806, 52705997762, 108481306974, 51700820218, 41385738518, 22291863858, 2104559210, 406934050, 14805978, 17173826, 3207538, 15526630834203, 16995760029751, 2778001465427, 1297269571695, 26670149771, 619718056103, 310640419011, 93852853471, 38342191355, 36285677847, 2889686323, 1493614443, 265193123, 44537947, 2258451, 2291435]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r := Explode([G.1, G.2, G.4, G.6, G.8, G.10, G.11, G.13, G.15, G.17, G.19, G.21, G.23, G.24, G.25, G.26, G.27, G.28]); AssignNames(~G, ["a", "b", "b2", "c", "c2", "d", "d2", "e", "e2", "f", "g", "g2", "h", "h2", "i", "i2", "j", "j2", "k", "k2", "l", "l2", "m", "n", "o", "p", "q", "r"]);
gap:G := PcGroupCode(423299912020114628848630018811674274786322987180848285590775342950395994055465835487902898208305587688272512958241932743581100196985937976925956239246094727724234022672833545017942470137572478591725483028250866571698162303677570624762619045096276947320535415925811969386089727851410245944061627007016875839012140556209302768201677356541252860019945914211635574197192814203831162977888794521502472084514603421738129483512546740431152255280111861120223141052949648235694685624387113501014085163665031406234437886695254220908249539474927355651855094353021610199533163907548576559905632346248444950960253004340893741176025280243426640604912373441626757752513179466412901669225347469133650579206844173252453184085043408100871986929103691524439798475122593183499217085222796211923331539814809253399072677148763765313574826576498662461226307835043280017395074585831749385383423127050466103613533150370504529866978638776336985094482005972670797185983813447157576927978491715327882211868741132506495509683419302488914180350147067307542996260170869620623020696502774428529280729908231673323741029545341412599946942453447372730000869227314631601386457069272959324249606177529649463999319812457361704109750056665425852855527958555590454945105536378346534907315729248330018311310235812980933625937797853946972261303109363350204369482098668820764027409490719881078149267298054242924827241477850396597378815995254279167133430507678612536502136102105143168867253106640506850572089487108321535646219825371972715140923959147493394886084515577457413717310852259896029067317620043919972403684362820195211683302466478157819648114056818523818782778345136774347739956431592524273364988778052278790200959224429884560980139365461599747510986528358431992147546027199283399965101290589046231456246513253438991845098581042908278747121124248933585336908501644221463746715338058452613791299471322296411529621093022884280943919193940070053065110675680829451534466240672657950589987351156643668634529344991360221458072575864331721769336023561573378752056094064859298711820089804686855808345857659837275990097864994658379996666192827272393965023814927064051159011946599404291393483092401812866953780292736344252833689766291034131790106391249480777468112713916009204658668000992830228697037436200197784589295683737162940157371460792094457997630157095114474063927994248224661474638272948705319721660635290860009669466031734969781211396986381160855305740577907571429381322601961387530995185708407357342530800100330082651028454011745751696704807146669073820828409346067375867390083215070993966721222479309826422134115044894932508696146813145571037578480332682872026081533154170468177671670508316846250886607162320498553465909398277404245018001942376779729480228317707611790551131048621476489511644156087017298504045714468991191570384846765136599494396081534433347907391653826371341332085794693173366949167361704809033653656378305916664483256369425307292472812160265134381982006460818770441465853336322878378892212578556575284055672964509384681887809742367127630176794407850535659133364432926153405689201417765954818686861648301102129567103,52242776064); a := G.1; b := G.2; c := G.4; d := G.6; e := G.8; f := G.10; g := G.11; h := G.13; i := G.15; j := G.17; k := G.19; l := G.21; m := G.23; n := G.24; o := G.25; p := G.26; q := G.27; r := G.28;
sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(423299912020114628848630018811674274786322987180848285590775342950395994055465835487902898208305587688272512958241932743581100196985937976925956239246094727724234022672833545017942470137572478591725483028250866571698162303677570624762619045096276947320535415925811969386089727851410245944061627007016875839012140556209302768201677356541252860019945914211635574197192814203831162977888794521502472084514603421738129483512546740431152255280111861120223141052949648235694685624387113501014085163665031406234437886695254220908249539474927355651855094353021610199533163907548576559905632346248444950960253004340893741176025280243426640604912373441626757752513179466412901669225347469133650579206844173252453184085043408100871986929103691524439798475122593183499217085222796211923331539814809253399072677148763765313574826576498662461226307835043280017395074585831749385383423127050466103613533150370504529866978638776336985094482005972670797185983813447157576927978491715327882211868741132506495509683419302488914180350147067307542996260170869620623020696502774428529280729908231673323741029545341412599946942453447372730000869227314631601386457069272959324249606177529649463999319812457361704109750056665425852855527958555590454945105536378346534907315729248330018311310235812980933625937797853946972261303109363350204369482098668820764027409490719881078149267298054242924827241477850396597378815995254279167133430507678612536502136102105143168867253106640506850572089487108321535646219825371972715140923959147493394886084515577457413717310852259896029067317620043919972403684362820195211683302466478157819648114056818523818782778345136774347739956431592524273364988778052278790200959224429884560980139365461599747510986528358431992147546027199283399965101290589046231456246513253438991845098581042908278747121124248933585336908501644221463746715338058452613791299471322296411529621093022884280943919193940070053065110675680829451534466240672657950589987351156643668634529344991360221458072575864331721769336023561573378752056094064859298711820089804686855808345857659837275990097864994658379996666192827272393965023814927064051159011946599404291393483092401812866953780292736344252833689766291034131790106391249480777468112713916009204658668000992830228697037436200197784589295683737162940157371460792094457997630157095114474063927994248224661474638272948705319721660635290860009669466031734969781211396986381160855305740577907571429381322601961387530995185708407357342530800100330082651028454011745751696704807146669073820828409346067375867390083215070993966721222479309826422134115044894932508696146813145571037578480332682872026081533154170468177671670508316846250886607162320498553465909398277404245018001942376779729480228317707611790551131048621476489511644156087017298504045714468991191570384846765136599494396081534433347907391653826371341332085794693173366949167361704809033653656378305916664483256369425307292472812160265134381982006460818770441465853336322878378892212578556575284055672964509384681887809742367127630176794407850535659133364432926153405689201417765954818686861648301102129567103,52242776064)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.10; g = G.11; h = G.13; i = G.15; j = G.17; k = G.19; l = G.21; m = G.23; n = G.24; o = G.25; p = G.26; q = G.27; r = G.28;
sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(423299912020114628848630018811674274786322987180848285590775342950395994055465835487902898208305587688272512958241932743581100196985937976925956239246094727724234022672833545017942470137572478591725483028250866571698162303677570624762619045096276947320535415925811969386089727851410245944061627007016875839012140556209302768201677356541252860019945914211635574197192814203831162977888794521502472084514603421738129483512546740431152255280111861120223141052949648235694685624387113501014085163665031406234437886695254220908249539474927355651855094353021610199533163907548576559905632346248444950960253004340893741176025280243426640604912373441626757752513179466412901669225347469133650579206844173252453184085043408100871986929103691524439798475122593183499217085222796211923331539814809253399072677148763765313574826576498662461226307835043280017395074585831749385383423127050466103613533150370504529866978638776336985094482005972670797185983813447157576927978491715327882211868741132506495509683419302488914180350147067307542996260170869620623020696502774428529280729908231673323741029545341412599946942453447372730000869227314631601386457069272959324249606177529649463999319812457361704109750056665425852855527958555590454945105536378346534907315729248330018311310235812980933625937797853946972261303109363350204369482098668820764027409490719881078149267298054242924827241477850396597378815995254279167133430507678612536502136102105143168867253106640506850572089487108321535646219825371972715140923959147493394886084515577457413717310852259896029067317620043919972403684362820195211683302466478157819648114056818523818782778345136774347739956431592524273364988778052278790200959224429884560980139365461599747510986528358431992147546027199283399965101290589046231456246513253438991845098581042908278747121124248933585336908501644221463746715338058452613791299471322296411529621093022884280943919193940070053065110675680829451534466240672657950589987351156643668634529344991360221458072575864331721769336023561573378752056094064859298711820089804686855808345857659837275990097864994658379996666192827272393965023814927064051159011946599404291393483092401812866953780292736344252833689766291034131790106391249480777468112713916009204658668000992830228697037436200197784589295683737162940157371460792094457997630157095114474063927994248224661474638272948705319721660635290860009669466031734969781211396986381160855305740577907571429381322601961387530995185708407357342530800100330082651028454011745751696704807146669073820828409346067375867390083215070993966721222479309826422134115044894932508696146813145571037578480332682872026081533154170468177671670508316846250886607162320498553465909398277404245018001942376779729480228317707611790551131048621476489511644156087017298504045714468991191570384846765136599494396081534433347907391653826371341332085794693173366949167361704809033653656378305916664483256369425307292472812160265134381982006460818770441465853336322878378892212578556575284055672964509384681887809742367127630176794407850535659133364432926153405689201417765954818686861648301102129567103,52242776064)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.10; g = G.11; h = G.13; i = G.15; j = G.17; k = G.19; l = G.21; m = G.23; n = G.24; o = G.25; p = G.26; q = G.27; r = G.28;
|
| Permutation group: | Degree $36$
$\langle(4,8,6,7)(5,9)(10,12,11)(13,17)(14,18)(15,16)(22,26,23,25,24,27)(31,34,32,35) \!\cdots\! \rangle$
|
magma:G := PermutationGroup< 36 | (4,8,6,7)(5,9)(10,12,11)(13,17)(14,18)(15,16)(22,26,23,25,24,27)(31,34,32,35)(33,36), (1,34,12,7,19,18,28,26,2,36,11,9,21,16,30,27,3,35,10,8,20,17,29,25)(4,32,23,14)(5,33,22,15)(6,31,24,13), (1,7,33)(2,8,32,3,9,31)(4,10,17,5,11,16)(6,12,18)(13,21,26,15,20,25,14,19,27)(22,28,34,23,30,35)(24,29,36) >;
gap:G := Group( (4,8,6,7)(5,9)(10,12,11)(13,17)(14,18)(15,16)(22,26,23,25,24,27)(31,34,32,35)(33,36), (1,34,12,7,19,18,28,26,2,36,11,9,21,16,30,27,3,35,10,8,20,17,29,25)(4,32,23,14)(5,33,22,15)(6,31,24,13), (1,7,33)(2,8,32,3,9,31)(4,10,17,5,11,16)(6,12,18)(13,21,26,15,20,25,14,19,27)(22,28,34,23,30,35)(24,29,36) );
sage:G = PermutationGroup(['(4,8,6,7)(5,9)(10,12,11)(13,17)(14,18)(15,16)(22,26,23,25,24,27)(31,34,32,35)(33,36)', '(1,34,12,7,19,18,28,26,2,36,11,9,21,16,30,27,3,35,10,8,20,17,29,25)(4,32,23,14)(5,33,22,15)(6,31,24,13)', '(1,7,33)(2,8,32,3,9,31)(4,10,17,5,11,16)(6,12,18)(13,21,26,15,20,25,14,19,27)(22,28,34,23,30,35)(24,29,36)'])
|
| Transitive group: |
36T114085 |
36T114550 |
|
|
more information |
| Direct product: |
not computed |
| Semidirect product: |
not computed |
| Trans. wreath product: |
not isomorphic to a non-trivial transitive wreath product |
| Possibly split product: |
$(C_3^{12}.C_2^6.C_2^6)$ . $S_4$ |
$C_3^{12}$ . $(C_2^8.C_2^4:S_4)$ |
$(C_3^{12}.C_2^6)$ . $(C_2^6.S_4)$ (2) |
$(C_3^{12}.C_2^6)$ . $(C_2^6.S_4)$ |
all 32 |
Elements of the group are displayed as permutations of degree 36.
The $3791 \times 3791$ character table is not available for this group.
The $3707 \times 3707$ rational character table is not available for this group.