Properties

Label 52242776064.ei
Order \( 2^{15} \cdot 3^{13} \)
Exponent \( 2^{3} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{18} \cdot 3^{13} \)
$\card{\mathrm{Out}(G)}$ \( 2^{3} \)
Perm deg. $36$
Trans deg. $36$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (4,8,6,7)(5,9)(10,12,11)(13,17)(14,18)(15,16)(22,26,23,25,24,27)(31,34,32,35)(33,36), (1,34,12,7,19,18,28,26,2,36,11,9,21,16,30,27,3,35,10,8,20,17,29,25)(4,32,23,14)(5,33,22,15)(6,31,24,13), (1,7,33)(2,8,32,3,9,31)(4,10,17,5,11,16)(6,12,18)(13,21,26,15,20,25,14,19,27)(22,28,34,23,30,35)(24,29,36) >;
 
Copy content gap:G := Group( (4,8,6,7)(5,9)(10,12,11)(13,17)(14,18)(15,16)(22,26,23,25,24,27)(31,34,32,35)(33,36), (1,34,12,7,19,18,28,26,2,36,11,9,21,16,30,27,3,35,10,8,20,17,29,25)(4,32,23,14)(5,33,22,15)(6,31,24,13), (1,7,33)(2,8,32,3,9,31)(4,10,17,5,11,16)(6,12,18)(13,21,26,15,20,25,14,19,27)(22,28,34,23,30,35)(24,29,36) );
 
Copy content sage:G = PermutationGroup(['(4,8,6,7)(5,9)(10,12,11)(13,17)(14,18)(15,16)(22,26,23,25,24,27)(31,34,32,35)(33,36)', '(1,34,12,7,19,18,28,26,2,36,11,9,21,16,30,27,3,35,10,8,20,17,29,25)(4,32,23,14)(5,33,22,15)(6,31,24,13)', '(1,7,33)(2,8,32,3,9,31)(4,10,17,5,11,16)(6,12,18)(13,21,26,15,20,25,14,19,27)(22,28,34,23,30,35)(24,29,36)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(423299912020114628848630018811674274786322987180848285590775342950395994055465835487902898208305587688272512958241932743581100196985937976925956239246094727724234022672833545017942470137572478591725483028250866571698162303677570624762619045096276947320535415925811969386089727851410245944061627007016875839012140556209302768201677356541252860019945914211635574197192814203831162977888794521502472084514603421738129483512546740431152255280111861120223141052949648235694685624387113501014085163665031406234437886695254220908249539474927355651855094353021610199533163907548576559905632346248444950960253004340893741176025280243426640604912373441626757752513179466412901669225347469133650579206844173252453184085043408100871986929103691524439798475122593183499217085222796211923331539814809253399072677148763765313574826576498662461226307835043280017395074585831749385383423127050466103613533150370504529866978638776336985094482005972670797185983813447157576927978491715327882211868741132506495509683419302488914180350147067307542996260170869620623020696502774428529280729908231673323741029545341412599946942453447372730000869227314631601386457069272959324249606177529649463999319812457361704109750056665425852855527958555590454945105536378346534907315729248330018311310235812980933625937797853946972261303109363350204369482098668820764027409490719881078149267298054242924827241477850396597378815995254279167133430507678612536502136102105143168867253106640506850572089487108321535646219825371972715140923959147493394886084515577457413717310852259896029067317620043919972403684362820195211683302466478157819648114056818523818782778345136774347739956431592524273364988778052278790200959224429884560980139365461599747510986528358431992147546027199283399965101290589046231456246513253438991845098581042908278747121124248933585336908501644221463746715338058452613791299471322296411529621093022884280943919193940070053065110675680829451534466240672657950589987351156643668634529344991360221458072575864331721769336023561573378752056094064859298711820089804686855808345857659837275990097864994658379996666192827272393965023814927064051159011946599404291393483092401812866953780292736344252833689766291034131790106391249480777468112713916009204658668000992830228697037436200197784589295683737162940157371460792094457997630157095114474063927994248224661474638272948705319721660635290860009669466031734969781211396986381160855305740577907571429381322601961387530995185708407357342530800100330082651028454011745751696704807146669073820828409346067375867390083215070993966721222479309826422134115044894932508696146813145571037578480332682872026081533154170468177671670508316846250886607162320498553465909398277404245018001942376779729480228317707611790551131048621476489511644156087017298504045714468991191570384846765136599494396081534433347907391653826371341332085794693173366949167361704809033653656378305916664483256369425307292472812160265134381982006460818770441465853336322878378892212578556575284055672964509384681887809742367127630176794407850535659133364432926153405689201417765954818686861648301102129567103,52242776064)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.10; g = G.11; h = G.13; i = G.15; j = G.17; k = G.19; l = G.21; m = G.23; n = G.24; o = G.25; p = G.26; q = G.27; r = G.28;
 

Group information

Description:$C_3^{12}.C_2^6.C_4^2.S_4.C_2^2$
Order: \(52242776064\)\(\medspace = 2^{15} \cdot 3^{13} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(417942208512\)\(\medspace = 2^{18} \cdot 3^{13} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 15, $C_3$ x 13
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$5$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 9 12 18 24
Elements 1 6762879 13968368 637974144 4983684624 5200091136 1074954240 13034939904 12899450880 14390949888 52242776064
Conjugacy classes   1 59 102 84 2448 22 15 967 50 43 3791
Divisions 1 59 102 79 2448 16 15 904 50 33 3707
Autjugacy classes 1 37 62 45 823 9 5 331 10 17 1340

Minimal presentations

Permutation degree:$36$
Transitive degree:$36$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r \mid b^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([28, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 91522507776, 1921413900561, 141, 3986979476930, 396417237891, 1004578362847, 469203637451, 311, 4736573143684, 2487044911712, 220973253540, 13680231156, 4954064957861, 2779087803441, 1050830202805, 442611806201, 257245414725, 481, 9717555643494, 3417651434770, 2406250518230, 265065666298, 200049041030, 48348916398, 7929191235847, 1994119317155, 1109621298303, 941742108251, 182203763063, 204134034195, 54866683375, 651, 397973786120, 5036135731236, 1265961191104, 153643625948, 418888935480, 5190758644, 4703506592, 6490471912, 12427658772489, 746993425957, 3098543965505, 1192417874013, 197886770041, 227029344789, 28600751405, 5094835461, 9405549339658, 1939535549990, 2687430493506, 1240453885534, 42002231162, 258022954262, 3232142322, 2222747502, 32348576186, 3342, 906, 216710774795, 13377208359, 3298819571779, 276908212319, 528734158971, 43159, 2951, 9674121719820, 908017883176, 3498998840132, 1339961098208, 303640646524, 86973906808, 151275563892, 2815639216, 37007382284, 11212, 1076, 18728091689, 2261417066565, 1280016654433, 1300562045, 320004163737, 601510069, 300755153, 9701, 11177309445134, 1916437420842, 3555136368070, 1168346538338, 265969751166, 302469511834, 194596819382, 30424464210, 11366429998, 25578715946, 352795254, 5808950, 1246, 19124403830799, 7887202713643, 1574202212423, 731586035811, 731440152703, 370363048091, 91430019283, 45789327599, 11510037771, 64807, 8327775, 20363373585424, 11773363101740, 4721499307464, 430374874596, 291905773952, 238628948476, 99889559800, 3150111092, 893676912, 118649932, 460307528, 10093456, 1488384, 550216, 1416, 9896458715153, 4937248899117, 4927160254537, 129125, 207681159297, 13934749, 12505, 14158601899026, 9272726496814, 1958410384970, 860021428326, 41528073346, 446226482846, 222937349562, 53906342998, 54879213554, 133757838, 516414826, 11606466, 189854186, 188810430, 16426, 1586, 11357249863727, 1384541921355, 3530956903, 914298470531, 1765478559, 114288384187, 114287309015, 209019123, 2903339, 484195, 13907, 25290436727828, 9316840732464, 1482012435532, 958573292648, 840804419076, 585996735904, 263499377084, 42254432856, 16380984052, 10854611984, 516668844, 3810596, 208928572, 208865096, 106308, 60500, 1756, 6180270243861, 662171811889, 2152062173261, 1011857645673, 505321377925, 10218937505, 818442429, 125856901849, 159667445, 95800593, 19160365, 3193701, 89173, 37485, 6738099830834, 1592222714958, 8120211562, 1051442746502, 1015397538, 131431518142, 131430343514, 13354230, 60093230, 10015846, 278678, 34241194229783, 1445186469939, 7183586156623, 2230427566187, 12266053767, 296026988707, 9560807615, 73352144091, 33916797175, 33965568275, 188117295, 1416103271, 236307871, 532695, 194063, 2185927, 4300824, 4891041792052, 26475724880, 2281092710508, 37623398536, 286355865764, 285136588992, 72459878620, 2351462648, 587865904, 16330016, 2722072, 454128, 76184, 5460580909081, 5634728386613, 5995375067217, 111872237677, 1217454644361, 530889655461, 15459225793, 146385028829, 67757534457, 18296119573, 16982784305, 2779516009, 472373409, 5713817, 13052113, 1092585, 24127639216154, 4498763286582, 8180860197970, 339155196014, 1271215185546, 414673136806, 52705997762, 108481306974, 51700820218, 41385738518, 22291863858, 2104559210, 406934050, 14805978, 17173826, 3207538, 15526630834203, 16995760029751, 2778001465427, 1297269571695, 26670149771, 619718056103, 310640419011, 93852853471, 38342191355, 36285677847, 2889686323, 1493614443, 265193123, 44537947, 2258451, 2291435]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r := Explode([G.1, G.2, G.4, G.6, G.8, G.10, G.11, G.13, G.15, G.17, G.19, G.21, G.23, G.24, G.25, G.26, G.27, G.28]); AssignNames(~G, ["a", "b", "b2", "c", "c2", "d", "d2", "e", "e2", "f", "g", "g2", "h", "h2", "i", "i2", "j", "j2", "k", "k2", "l", "l2", "m", "n", "o", "p", "q", "r"]);
 
Copy content gap:G := PcGroupCode(423299912020114628848630018811674274786322987180848285590775342950395994055465835487902898208305587688272512958241932743581100196985937976925956239246094727724234022672833545017942470137572478591725483028250866571698162303677570624762619045096276947320535415925811969386089727851410245944061627007016875839012140556209302768201677356541252860019945914211635574197192814203831162977888794521502472084514603421738129483512546740431152255280111861120223141052949648235694685624387113501014085163665031406234437886695254220908249539474927355651855094353021610199533163907548576559905632346248444950960253004340893741176025280243426640604912373441626757752513179466412901669225347469133650579206844173252453184085043408100871986929103691524439798475122593183499217085222796211923331539814809253399072677148763765313574826576498662461226307835043280017395074585831749385383423127050466103613533150370504529866978638776336985094482005972670797185983813447157576927978491715327882211868741132506495509683419302488914180350147067307542996260170869620623020696502774428529280729908231673323741029545341412599946942453447372730000869227314631601386457069272959324249606177529649463999319812457361704109750056665425852855527958555590454945105536378346534907315729248330018311310235812980933625937797853946972261303109363350204369482098668820764027409490719881078149267298054242924827241477850396597378815995254279167133430507678612536502136102105143168867253106640506850572089487108321535646219825371972715140923959147493394886084515577457413717310852259896029067317620043919972403684362820195211683302466478157819648114056818523818782778345136774347739956431592524273364988778052278790200959224429884560980139365461599747510986528358431992147546027199283399965101290589046231456246513253438991845098581042908278747121124248933585336908501644221463746715338058452613791299471322296411529621093022884280943919193940070053065110675680829451534466240672657950589987351156643668634529344991360221458072575864331721769336023561573378752056094064859298711820089804686855808345857659837275990097864994658379996666192827272393965023814927064051159011946599404291393483092401812866953780292736344252833689766291034131790106391249480777468112713916009204658668000992830228697037436200197784589295683737162940157371460792094457997630157095114474063927994248224661474638272948705319721660635290860009669466031734969781211396986381160855305740577907571429381322601961387530995185708407357342530800100330082651028454011745751696704807146669073820828409346067375867390083215070993966721222479309826422134115044894932508696146813145571037578480332682872026081533154170468177671670508316846250886607162320498553465909398277404245018001942376779729480228317707611790551131048621476489511644156087017298504045714468991191570384846765136599494396081534433347907391653826371341332085794693173366949167361704809033653656378305916664483256369425307292472812160265134381982006460818770441465853336322878378892212578556575284055672964509384681887809742367127630176794407850535659133364432926153405689201417765954818686861648301102129567103,52242776064); a := G.1; b := G.2; c := G.4; d := G.6; e := G.8; f := G.10; g := G.11; h := G.13; i := G.15; j := G.17; k := G.19; l := G.21; m := G.23; n := G.24; o := G.25; p := G.26; q := G.27; r := G.28;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(423299912020114628848630018811674274786322987180848285590775342950395994055465835487902898208305587688272512958241932743581100196985937976925956239246094727724234022672833545017942470137572478591725483028250866571698162303677570624762619045096276947320535415925811969386089727851410245944061627007016875839012140556209302768201677356541252860019945914211635574197192814203831162977888794521502472084514603421738129483512546740431152255280111861120223141052949648235694685624387113501014085163665031406234437886695254220908249539474927355651855094353021610199533163907548576559905632346248444950960253004340893741176025280243426640604912373441626757752513179466412901669225347469133650579206844173252453184085043408100871986929103691524439798475122593183499217085222796211923331539814809253399072677148763765313574826576498662461226307835043280017395074585831749385383423127050466103613533150370504529866978638776336985094482005972670797185983813447157576927978491715327882211868741132506495509683419302488914180350147067307542996260170869620623020696502774428529280729908231673323741029545341412599946942453447372730000869227314631601386457069272959324249606177529649463999319812457361704109750056665425852855527958555590454945105536378346534907315729248330018311310235812980933625937797853946972261303109363350204369482098668820764027409490719881078149267298054242924827241477850396597378815995254279167133430507678612536502136102105143168867253106640506850572089487108321535646219825371972715140923959147493394886084515577457413717310852259896029067317620043919972403684362820195211683302466478157819648114056818523818782778345136774347739956431592524273364988778052278790200959224429884560980139365461599747510986528358431992147546027199283399965101290589046231456246513253438991845098581042908278747121124248933585336908501644221463746715338058452613791299471322296411529621093022884280943919193940070053065110675680829451534466240672657950589987351156643668634529344991360221458072575864331721769336023561573378752056094064859298711820089804686855808345857659837275990097864994658379996666192827272393965023814927064051159011946599404291393483092401812866953780292736344252833689766291034131790106391249480777468112713916009204658668000992830228697037436200197784589295683737162940157371460792094457997630157095114474063927994248224661474638272948705319721660635290860009669466031734969781211396986381160855305740577907571429381322601961387530995185708407357342530800100330082651028454011745751696704807146669073820828409346067375867390083215070993966721222479309826422134115044894932508696146813145571037578480332682872026081533154170468177671670508316846250886607162320498553465909398277404245018001942376779729480228317707611790551131048621476489511644156087017298504045714468991191570384846765136599494396081534433347907391653826371341332085794693173366949167361704809033653656378305916664483256369425307292472812160265134381982006460818770441465853336322878378892212578556575284055672964509384681887809742367127630176794407850535659133364432926153405689201417765954818686861648301102129567103,52242776064)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.10; g = G.11; h = G.13; i = G.15; j = G.17; k = G.19; l = G.21; m = G.23; n = G.24; o = G.25; p = G.26; q = G.27; r = G.28;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(423299912020114628848630018811674274786322987180848285590775342950395994055465835487902898208305587688272512958241932743581100196985937976925956239246094727724234022672833545017942470137572478591725483028250866571698162303677570624762619045096276947320535415925811969386089727851410245944061627007016875839012140556209302768201677356541252860019945914211635574197192814203831162977888794521502472084514603421738129483512546740431152255280111861120223141052949648235694685624387113501014085163665031406234437886695254220908249539474927355651855094353021610199533163907548576559905632346248444950960253004340893741176025280243426640604912373441626757752513179466412901669225347469133650579206844173252453184085043408100871986929103691524439798475122593183499217085222796211923331539814809253399072677148763765313574826576498662461226307835043280017395074585831749385383423127050466103613533150370504529866978638776336985094482005972670797185983813447157576927978491715327882211868741132506495509683419302488914180350147067307542996260170869620623020696502774428529280729908231673323741029545341412599946942453447372730000869227314631601386457069272959324249606177529649463999319812457361704109750056665425852855527958555590454945105536378346534907315729248330018311310235812980933625937797853946972261303109363350204369482098668820764027409490719881078149267298054242924827241477850396597378815995254279167133430507678612536502136102105143168867253106640506850572089487108321535646219825371972715140923959147493394886084515577457413717310852259896029067317620043919972403684362820195211683302466478157819648114056818523818782778345136774347739956431592524273364988778052278790200959224429884560980139365461599747510986528358431992147546027199283399965101290589046231456246513253438991845098581042908278747121124248933585336908501644221463746715338058452613791299471322296411529621093022884280943919193940070053065110675680829451534466240672657950589987351156643668634529344991360221458072575864331721769336023561573378752056094064859298711820089804686855808345857659837275990097864994658379996666192827272393965023814927064051159011946599404291393483092401812866953780292736344252833689766291034131790106391249480777468112713916009204658668000992830228697037436200197784589295683737162940157371460792094457997630157095114474063927994248224661474638272948705319721660635290860009669466031734969781211396986381160855305740577907571429381322601961387530995185708407357342530800100330082651028454011745751696704807146669073820828409346067375867390083215070993966721222479309826422134115044894932508696146813145571037578480332682872026081533154170468177671670508316846250886607162320498553465909398277404245018001942376779729480228317707611790551131048621476489511644156087017298504045714468991191570384846765136599494396081534433347907391653826371341332085794693173366949167361704809033653656378305916664483256369425307292472812160265134381982006460818770441465853336322878378892212578556575284055672964509384681887809742367127630176794407850535659133364432926153405689201417765954818686861648301102129567103,52242776064)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.10; g = G.11; h = G.13; i = G.15; j = G.17; k = G.19; l = G.21; m = G.23; n = G.24; o = G.25; p = G.26; q = G.27; r = G.28;
 
Permutation group:Degree $36$ $\langle(4,8,6,7)(5,9)(10,12,11)(13,17)(14,18)(15,16)(22,26,23,25,24,27)(31,34,32,35) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (4,8,6,7)(5,9)(10,12,11)(13,17)(14,18)(15,16)(22,26,23,25,24,27)(31,34,32,35)(33,36), (1,34,12,7,19,18,28,26,2,36,11,9,21,16,30,27,3,35,10,8,20,17,29,25)(4,32,23,14)(5,33,22,15)(6,31,24,13), (1,7,33)(2,8,32,3,9,31)(4,10,17,5,11,16)(6,12,18)(13,21,26,15,20,25,14,19,27)(22,28,34,23,30,35)(24,29,36) >;
 
Copy content gap:G := Group( (4,8,6,7)(5,9)(10,12,11)(13,17)(14,18)(15,16)(22,26,23,25,24,27)(31,34,32,35)(33,36), (1,34,12,7,19,18,28,26,2,36,11,9,21,16,30,27,3,35,10,8,20,17,29,25)(4,32,23,14)(5,33,22,15)(6,31,24,13), (1,7,33)(2,8,32,3,9,31)(4,10,17,5,11,16)(6,12,18)(13,21,26,15,20,25,14,19,27)(22,28,34,23,30,35)(24,29,36) );
 
Copy content sage:G = PermutationGroup(['(4,8,6,7)(5,9)(10,12,11)(13,17)(14,18)(15,16)(22,26,23,25,24,27)(31,34,32,35)(33,36)', '(1,34,12,7,19,18,28,26,2,36,11,9,21,16,30,27,3,35,10,8,20,17,29,25)(4,32,23,14)(5,33,22,15)(6,31,24,13)', '(1,7,33)(2,8,32,3,9,31)(4,10,17,5,11,16)(6,12,18)(13,21,26,15,20,25,14,19,27)(22,28,34,23,30,35)(24,29,36)'])
 
Transitive group: 36T114085 36T114550 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_3^{12}.C_2^6.C_2^6)$ . $S_4$ $C_3^{12}$ . $(C_2^8.C_2^4:S_4)$ $(C_3^{12}.C_2^6)$ . $(C_2^6.S_4)$ (2) $(C_3^{12}.C_2^6)$ . $(C_2^6.S_4)$ all 32

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2}^{3} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 51 normal subgroups (31 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $C_3^{12}.C_2^6.C_4^2.A_4$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^7.C_2^5.C_2^3$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^{12}.C_3$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 4 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $3791 \times 3791$ character table is not available for this group.

Rational character table

The $3707 \times 3707$ rational character table is not available for this group.