Properties

Label 51200000000.gt
Order \( 2^{17} \cdot 5^{8} \)
Exponent \( 2^{4} \cdot 5 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{5} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{19} \cdot 5^{8} \)
$\card{\mathrm{Out}(G)}$ \( 2^{2} \)
Perm deg. not computed
Trans deg. not computed
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 40 | (1,5,2,3)(6,10,7,8)(11,14)(12,13)(16,22,17,21,20,23,19,24)(18,25)(26,33)(27,34)(28,35)(29,31)(30,32)(36,39,37,40,38), (1,13)(2,14,4,11,5,12,3,15)(6,37)(7,40,9,36,10,39,8,38)(16,34,20,32,19,35,18,33,17,31)(21,26,23,30,24,27,22,28)(25,29), (1,24,37,17,4,23,40,20,2,22,38,18,5,21,36,16,3,25,39,19)(6,29,15,31,9,26,14,33,10,30,12,32,7,28,13,35)(8,27,11,34) >;
 
Copy content gap:G := Group( (1,5,2,3)(6,10,7,8)(11,14)(12,13)(16,22,17,21,20,23,19,24)(18,25)(26,33)(27,34)(28,35)(29,31)(30,32)(36,39,37,40,38), (1,13)(2,14,4,11,5,12,3,15)(6,37)(7,40,9,36,10,39,8,38)(16,34,20,32,19,35,18,33,17,31)(21,26,23,30,24,27,22,28)(25,29), (1,24,37,17,4,23,40,20,2,22,38,18,5,21,36,16,3,25,39,19)(6,29,15,31,9,26,14,33,10,30,12,32,7,28,13,35)(8,27,11,34) );
 
Copy content sage:G = PermutationGroup(['(1,5,2,3)(6,10,7,8)(11,14)(12,13)(16,22,17,21,20,23,19,24)(18,25)(26,33)(27,34)(28,35)(29,31)(30,32)(36,39,37,40,38)', '(1,13)(2,14,4,11,5,12,3,15)(6,37)(7,40,9,36,10,39,8,38)(16,34,20,32,19,35,18,33,17,31)(21,26,23,30,24,27,22,28)(25,29)', '(1,24,37,17,4,23,40,20,2,22,38,18,5,21,36,16,3,25,39,19)(6,29,15,31,9,26,14,33,10,30,12,32,7,28,13,35)(8,27,11,34)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(21485125095298125991773037673148536993541931586037994501218522253825071042843149017794384289120599753090089877119822692066357724692374745273105197930692220012755428064406720586531082881040691438491522043103065100006356282567775218608929331538926091528031781310101492794205443894202922817881678132090270664149734812234128234534387758912946747882376823878385331039440675444823183696746320392024399987702007487385129546248889577316748974273155672094860885388708825761560962347295675313547726897780938069214287316507137850255436060447826167738014590599068708463810706922714402819931447814296789135224361240400111002156734104378329424749741314515829517335536401456116363672945379790902762878346623647357214545240153661871037207738821014092778541240636198623890319721880537509787383163005221431628238078496583128992503621011167858708170433462667802607369336342375157376960573036618228781487216311356060069058324516094720509984434014964474160350794359657166173354923870353154651414075670574169928270342013076059201217833231704863903729284493414817432432622850432027893837358796283633390214378557035124951488349777681108430352523690246510885212613075528018708464102473732204889122246353855182638590666629861160490240509895136339822650491916452735520554168699018690416627696873986377360665132689163331384795561216019194393507279701673870091310897125103868261261517479530360478687315203744712358248710137627459116512228349710499312576792282729298250179071132595265271178488125514657809783068578843393956149608663808321332144019994384137753869338697258526514555611000098457564296214720354347176723599466546224281575477477720830441162075371851243830302532127491525838359523808881861800039937148107612826275315880995012222464370056323896417928316521216297745163163246359123550127833791503652673711020571072815300039684546069418115854975456581070310465832643954267530811538793321976150776293121494525831073082647022739626798656223023790610426476530453603589831415812775643991894355863980294333521864590114466271786888066083496376256335882217588329248398079964766138112704603681927113600426635589312062728799992361278139097295367710671208539100610844315736799487783049479264718564149357913782325372789730484735394784735082408803158935877685488115780581678193558088224574325766986315371036306792962675635809128787613588803148337351411948047918917004872562719612755423407062721208704416034840424763646228224055385870848655109824567499770234008461189485617728293848951381115614671102339687201812143225638074831101366761570098368336383827727627186078682127232822880398287682940988126464934922401619327686794361145597405810924876572459098137755406509144567186661318710542579583652968750183738076153435383823932766962759204779378146264619898116039210084598755839810562862168308443071709696827475313432607108139784900788895743,51200000000)'); a = G.1; b = G.3; c = G.6; d = G.9; e = G.10; f = G.12; g = G.14; h = G.17; i = G.20; j = G.21; k = G.22; l = G.23; m = G.24; n = G.25;
 

Group information

Description:$C_5^8.C_2^5.C_2^6.C_2^4.C_4$
Order: \(51200000000\)\(\medspace = 2^{17} \cdot 5^{8} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(204800000000\)\(\medspace = 2^{19} \cdot 5^{8} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 17, $C_5$ x 8
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 4 5 8 10 16 20 40 80
Elements 1 1032575 830633600 390624 12926208000 148576800 7680000000 4619366400 19873792000 5120000000 51200000000
Conjugacy classes   1 22 723 33 482 253 16 2808 960 8 5306
Divisions 1 22 407 33 244 253 8 1484 475 4 2931
Autjugacy classes 1 18 511 27 278 172 4 1749 522 2 3284

Minimal presentations

Permutation degree:not computed
Transitive degree:not computed
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n \mid c^{8}=e^{4}=f^{4}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([25, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 5, 5, 5, 5, 5, 5, 5, 50, 406264328026, 2356301169302, 84045250377, 202, 124003964003, 693067264428, 278, 416813074004, 1212498177029, 186890752104, 1234262791205, 1003841695230, 1743979100455, 400147047080, 25148006805, 430, 8303838782406, 1489507807231, 287992367656, 153468315081, 122366362406, 506, 3268425344007, 2041289536032, 844873734457, 442876726482, 305128244907, 811490976008, 2274601795233, 1739099246458, 585862048883, 688813981308, 248455801933, 56077057058, 71133696633, 15224257108, 8988597696009, 3126221152034, 2310399904059, 1446435408084, 610561608109, 365808654134, 192367006159, 81790217184, 35684869709, 734, 1553801497610, 930105228835, 487695507260, 408995875285, 519529489710, 183301932135, 121851140560, 38897410385, 48782977310, 342343680011, 5996745830436, 3661922764861, 1152051686486, 832514496111, 374790508936, 36864163361, 42433771386, 117811, 26016080636, 7008384861, 886, 249733120012, 3328123136037, 2416181580862, 971777497687, 367785350512, 510030684937, 39943176162, 116278999387, 171812, 18876855637, 12688625562, 16718895244813, 6781850880038, 3754745881663, 1749852518488, 1003477171313, 99471209738, 93912313763, 45196233788, 380901013, 4727786238, 8342211063, 6594024088, 2163006613, 1038, 10320502656014, 4466446080039, 3939725184064, 483533568089, 697544064114, 244447344139, 194945952164, 133073712189, 504216214, 3701820239, 14500326264, 21289, 13814, 1114, 351272960015, 1572995072040, 1810497536065, 499736576140, 409765, 409790, 205015, 19776000240, 13090, 13115, 19332963584016, 760304844841, 4510123827266, 963158528091, 1218407680116, 468509337741, 111490624166, 57470880191, 41811024216, 10885957041, 5352212266, 1921170291, 153316, 2001860841, 354913616, 1266, 4703287910417, 1065170534442, 3575564697667, 1349904384092, 1125043200117, 273747916942, 161932032167, 82788480192, 88160832217, 22441910642, 10956816267, 1728360292, 324317, 751554342, 695331367, 1342, 191447040018, 2198847078443, 1216245145668, 2719053824093, 537472000118, 420756428943, 339886592168, 169936000193, 71594432218, 46589854643, 23295216268, 798000293, 304318, 1467864343, 1455951368, 22897950720019, 16384000044, 158515200069, 614400094, 409600119, 2304000144, 102400169, 19200219, 476800244, 6400269, 400344, 400369, 30419, 20444, 7182336000020, 3440640045, 19353600070, 3225600095, 2150400120, 27202560145, 268800170, 268800195, 285600245, 3150345, 2100370, 157920, 105445, 7524424089621, 347832320046, 15769600071, 16896000096, 11264000121, 28441600146, 3238400171, 563200196, 774400221, 334400246, 12100346, 11000371, 605421, 550446, 2779889664022, 97976320047, 192184320072, 88320000097, 58880000122, 31854080147, 7418880172, 7389440197, 2870400222, 765440247, 938400272, 87170347, 57500372, 2944422, 2875447, 21252970905623, 1284066508848, 4530261196873, 2254946304098, 1422409728123, 855380582548, 209645568173, 124022784198, 105484800223, 37040755448, 13478400273, 312768298, 1452000323, 1468320348, 852000373, 11424423, 5100448, 143360000024, 4275230720049, 6028805120074, 1523353600099, 534451200124, 267202560149, 290419200174, 245209600199, 50000000224, 25000000249, 25000000274, 11775200299, 6250000324, 2343750349, 1562500374]); a,b,c,d,e,f,g,h,i,j,k,l,m,n := Explode([G.1, G.3, G.6, G.9, G.10, G.12, G.14, G.17, G.20, G.21, G.22, G.23, G.24, G.25]); AssignNames(~G, ["a", "a2", "b", "b2", "b4", "c", "c2", "c4", "d", "e", "e2", "f", "f2", "g", "g2", "g4", "h", "h2", "h4", "i", "j", "k", "l", "m", "n"]);
 
Copy content gap:G := PcGroupCode(21485125095298125991773037673148536993541931586037994501218522253825071042843149017794384289120599753090089877119822692066357724692374745273105197930692220012755428064406720586531082881040691438491522043103065100006356282567775218608929331538926091528031781310101492794205443894202922817881678132090270664149734812234128234534387758912946747882376823878385331039440675444823183696746320392024399987702007487385129546248889577316748974273155672094860885388708825761560962347295675313547726897780938069214287316507137850255436060447826167738014590599068708463810706922714402819931447814296789135224361240400111002156734104378329424749741314515829517335536401456116363672945379790902762878346623647357214545240153661871037207738821014092778541240636198623890319721880537509787383163005221431628238078496583128992503621011167858708170433462667802607369336342375157376960573036618228781487216311356060069058324516094720509984434014964474160350794359657166173354923870353154651414075670574169928270342013076059201217833231704863903729284493414817432432622850432027893837358796283633390214378557035124951488349777681108430352523690246510885212613075528018708464102473732204889122246353855182638590666629861160490240509895136339822650491916452735520554168699018690416627696873986377360665132689163331384795561216019194393507279701673870091310897125103868261261517479530360478687315203744712358248710137627459116512228349710499312576792282729298250179071132595265271178488125514657809783068578843393956149608663808321332144019994384137753869338697258526514555611000098457564296214720354347176723599466546224281575477477720830441162075371851243830302532127491525838359523808881861800039937148107612826275315880995012222464370056323896417928316521216297745163163246359123550127833791503652673711020571072815300039684546069418115854975456581070310465832643954267530811538793321976150776293121494525831073082647022739626798656223023790610426476530453603589831415812775643991894355863980294333521864590114466271786888066083496376256335882217588329248398079964766138112704603681927113600426635589312062728799992361278139097295367710671208539100610844315736799487783049479264718564149357913782325372789730484735394784735082408803158935877685488115780581678193558088224574325766986315371036306792962675635809128787613588803148337351411948047918917004872562719612755423407062721208704416034840424763646228224055385870848655109824567499770234008461189485617728293848951381115614671102339687201812143225638074831101366761570098368336383827727627186078682127232822880398287682940988126464934922401619327686794361145597405810924876572459098137755406509144567186661318710542579583652968750183738076153435383823932766962759204779378146264619898116039210084598755839810562862168308443071709696827475313432607108139784900788895743,51200000000); a := G.1; b := G.3; c := G.6; d := G.9; e := G.10; f := G.12; g := G.14; h := G.17; i := G.20; j := G.21; k := G.22; l := G.23; m := G.24; n := G.25;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(21485125095298125991773037673148536993541931586037994501218522253825071042843149017794384289120599753090089877119822692066357724692374745273105197930692220012755428064406720586531082881040691438491522043103065100006356282567775218608929331538926091528031781310101492794205443894202922817881678132090270664149734812234128234534387758912946747882376823878385331039440675444823183696746320392024399987702007487385129546248889577316748974273155672094860885388708825761560962347295675313547726897780938069214287316507137850255436060447826167738014590599068708463810706922714402819931447814296789135224361240400111002156734104378329424749741314515829517335536401456116363672945379790902762878346623647357214545240153661871037207738821014092778541240636198623890319721880537509787383163005221431628238078496583128992503621011167858708170433462667802607369336342375157376960573036618228781487216311356060069058324516094720509984434014964474160350794359657166173354923870353154651414075670574169928270342013076059201217833231704863903729284493414817432432622850432027893837358796283633390214378557035124951488349777681108430352523690246510885212613075528018708464102473732204889122246353855182638590666629861160490240509895136339822650491916452735520554168699018690416627696873986377360665132689163331384795561216019194393507279701673870091310897125103868261261517479530360478687315203744712358248710137627459116512228349710499312576792282729298250179071132595265271178488125514657809783068578843393956149608663808321332144019994384137753869338697258526514555611000098457564296214720354347176723599466546224281575477477720830441162075371851243830302532127491525838359523808881861800039937148107612826275315880995012222464370056323896417928316521216297745163163246359123550127833791503652673711020571072815300039684546069418115854975456581070310465832643954267530811538793321976150776293121494525831073082647022739626798656223023790610426476530453603589831415812775643991894355863980294333521864590114466271786888066083496376256335882217588329248398079964766138112704603681927113600426635589312062728799992361278139097295367710671208539100610844315736799487783049479264718564149357913782325372789730484735394784735082408803158935877685488115780581678193558088224574325766986315371036306792962675635809128787613588803148337351411948047918917004872562719612755423407062721208704416034840424763646228224055385870848655109824567499770234008461189485617728293848951381115614671102339687201812143225638074831101366761570098368336383827727627186078682127232822880398287682940988126464934922401619327686794361145597405810924876572459098137755406509144567186661318710542579583652968750183738076153435383823932766962759204779378146264619898116039210084598755839810562862168308443071709696827475313432607108139784900788895743,51200000000)'); a = G.1; b = G.3; c = G.6; d = G.9; e = G.10; f = G.12; g = G.14; h = G.17; i = G.20; j = G.21; k = G.22; l = G.23; m = G.24; n = G.25;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(21485125095298125991773037673148536993541931586037994501218522253825071042843149017794384289120599753090089877119822692066357724692374745273105197930692220012755428064406720586531082881040691438491522043103065100006356282567775218608929331538926091528031781310101492794205443894202922817881678132090270664149734812234128234534387758912946747882376823878385331039440675444823183696746320392024399987702007487385129546248889577316748974273155672094860885388708825761560962347295675313547726897780938069214287316507137850255436060447826167738014590599068708463810706922714402819931447814296789135224361240400111002156734104378329424749741314515829517335536401456116363672945379790902762878346623647357214545240153661871037207738821014092778541240636198623890319721880537509787383163005221431628238078496583128992503621011167858708170433462667802607369336342375157376960573036618228781487216311356060069058324516094720509984434014964474160350794359657166173354923870353154651414075670574169928270342013076059201217833231704863903729284493414817432432622850432027893837358796283633390214378557035124951488349777681108430352523690246510885212613075528018708464102473732204889122246353855182638590666629861160490240509895136339822650491916452735520554168699018690416627696873986377360665132689163331384795561216019194393507279701673870091310897125103868261261517479530360478687315203744712358248710137627459116512228349710499312576792282729298250179071132595265271178488125514657809783068578843393956149608663808321332144019994384137753869338697258526514555611000098457564296214720354347176723599466546224281575477477720830441162075371851243830302532127491525838359523808881861800039937148107612826275315880995012222464370056323896417928316521216297745163163246359123550127833791503652673711020571072815300039684546069418115854975456581070310465832643954267530811538793321976150776293121494525831073082647022739626798656223023790610426476530453603589831415812775643991894355863980294333521864590114466271786888066083496376256335882217588329248398079964766138112704603681927113600426635589312062728799992361278139097295367710671208539100610844315736799487783049479264718564149357913782325372789730484735394784735082408803158935877685488115780581678193558088224574325766986315371036306792962675635809128787613588803148337351411948047918917004872562719612755423407062721208704416034840424763646228224055385870848655109824567499770234008461189485617728293848951381115614671102339687201812143225638074831101366761570098368336383827727627186078682127232822880398287682940988126464934922401619327686794361145597405810924876572459098137755406509144567186661318710542579583652968750183738076153435383823932766962759204779378146264619898116039210084598755839810562862168308443071709696827475313432607108139784900788895743,51200000000)'); a = G.1; b = G.3; c = G.6; d = G.9; e = G.10; f = G.12; g = G.14; h = G.17; i = G.20; j = G.21; k = G.22; l = G.23; m = G.24; n = G.25;
 
Permutation group:Degree $40$ $\langle(1,5,2,3)(6,10,7,8)(11,14)(12,13)(16,22,17,21,20,23,19,24)(18,25)(26,33) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 40 | (1,5,2,3)(6,10,7,8)(11,14)(12,13)(16,22,17,21,20,23,19,24)(18,25)(26,33)(27,34)(28,35)(29,31)(30,32)(36,39,37,40,38), (1,13)(2,14,4,11,5,12,3,15)(6,37)(7,40,9,36,10,39,8,38)(16,34,20,32,19,35,18,33,17,31)(21,26,23,30,24,27,22,28)(25,29), (1,24,37,17,4,23,40,20,2,22,38,18,5,21,36,16,3,25,39,19)(6,29,15,31,9,26,14,33,10,30,12,32,7,28,13,35)(8,27,11,34) >;
 
Copy content gap:G := Group( (1,5,2,3)(6,10,7,8)(11,14)(12,13)(16,22,17,21,20,23,19,24)(18,25)(26,33)(27,34)(28,35)(29,31)(30,32)(36,39,37,40,38), (1,13)(2,14,4,11,5,12,3,15)(6,37)(7,40,9,36,10,39,8,38)(16,34,20,32,19,35,18,33,17,31)(21,26,23,30,24,27,22,28)(25,29), (1,24,37,17,4,23,40,20,2,22,38,18,5,21,36,16,3,25,39,19)(6,29,15,31,9,26,14,33,10,30,12,32,7,28,13,35)(8,27,11,34) );
 
Copy content sage:G = PermutationGroup(['(1,5,2,3)(6,10,7,8)(11,14)(12,13)(16,22,17,21,20,23,19,24)(18,25)(26,33)(27,34)(28,35)(29,31)(30,32)(36,39,37,40,38)', '(1,13)(2,14,4,11,5,12,3,15)(6,37)(7,40,9,36,10,39,8,38)(16,34,20,32,19,35,18,33,17,31)(21,26,23,30,24,27,22,28)(25,29)', '(1,24,37,17,4,23,40,20,2,22,38,18,5,21,36,16,3,25,39,19)(6,29,15,31,9,26,14,33,10,30,12,32,7,28,13,35)(8,27,11,34)'])
 
Transitive group: 40T302460 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_5^8.C_2^4.C_2^6.C_2^4)$ . $D_4$ (14) $(C_5^8.C_2^5.C_2^6.C_2^4)$ . $C_4$ (7) $(C_5^8.C_2^5.C_2^6.C_2^4)$ . $C_4$ $(C_5^8.C_2^5.C_2^4)$ . $(Q_8^2:C_4)$ (2) all 187

Elements of the group are displayed as permutations of degree 40.

Homology

Abelianization: $C_{2} \times C_{4}^{2} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 773 normal subgroups (399 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $(C_2\times C_4^5).C_2^3.C_2^3$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5^8$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 3 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $5306 \times 5306$ character table is not available for this group.

Rational character table

The $2931 \times 2931$ rational character table is not available for this group.