Properties

Label 512.752060
Order \( 2^{9} \)
Exponent \( 2^{2} \)
Nilpotent yes
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{5} \)
$\card{Z(G)}$ \( 2^{5} \)
$\card{\Aut(G)}$ \( 2^{26} \cdot 5 \)
$\card{\mathrm{Out}(G)}$ \( 2^{22} \cdot 5 \)
Trans deg. not computed
Rank $5$

Learn more

This group is not stored in the database. However, basic information about the group, computed on the fly, is listed below.

Group information

Description:$C_2^4 . C_2^5$
Order: \(512\)\(\medspace = 2^{9} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism group:Group of order 335544320
Nilpotency class:$2$
Derived length:$2$

This group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian. Whether it is metacyclic, monomial, or rational has not been computed.

Group statistics

Order 1 2 4
Elements 1 191 320 512
Conjugacy classes   1 51 40 92
Divisions data not computed
Autjugacy classes data not computed

Dimension 1 2 4
Irr. complex chars.   32 40 20 92

Constructions

Presentation: ${\langle a, b, c, d, e, f, g, h, i \mid c^{2}=d^{2}=e^{2}=f^{2}=g^{2}=h^{2}= \!\cdots\! \rangle}$ Copy content Toggle raw display

Homology

Abelianization: $C_{2}^{5} $

Subgroups

Center: $Z \simeq$ $C_2^5$ $G/Z \simeq$ $C_2^4$
Commutator: $G' \simeq$ $C_2^4$ $G/G' \simeq$ $C_2^5$
Frattini: $\Phi \simeq$ $C_2^4$ $G/\Phi \simeq$ $C_2^5$
Fitting: $\operatorname{Fit} \simeq$ $C_2^4 . C_2^5$ $G/\operatorname{Fit} \simeq$ $C_1$
Radical: $R \simeq$ $C_2^4 . C_2^5$ $G/R \simeq$ $C_1$
Socle: $S \simeq$ $C_2^5$ $G/S \simeq$ $C_2^4$
Maximal subgroups: $M_{2,1} \simeq$ $C_2^2.D_4^2$ $G/M_{2,1} \simeq$ $C_2$ 16 normal subgroups
$M_{2,2} \simeq$ $C_2^5:D_4$ $G/M_{2,2} \simeq$ $C_2$ 10 normal subgroups
$M_{2,3} \simeq$ $C_2^5.D_4$ $G/M_{2,3} \simeq$ $C_2$ 5 normal subgroups
Maximal quotients: $m_{2,1} \simeq$ $C_2$ $G/m_{2,1} \simeq$ $C_2^2.D_4^2$ 16 normal subgroups
$m_{2,2} \simeq$ $C_2$ $G/m_{2,2} \simeq$ $C_2^3.C_2^5$ 5 normal subgroups
$m_{2,3} \simeq$ $C_2$ $G/m_{2,3} \simeq$ $C_2^2.D_4^2$ 10 normal subgroups