Properties

Label 5062500.c
Order \( 2^{2} \cdot 3^{4} \cdot 5^{6} \)
Exponent \( 2 \cdot 3^{2} \cdot 5 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{2} \cdot 3 \)
$\card{Z(G)}$ \( 1 \)
$\card{\Aut(G)}$ \( 2^{5} \cdot 3^{4} \cdot 5^{6} \)
$\card{\mathrm{Out}(G)}$ \( 2^{3} \)
Perm deg. $45$
Trans deg. $45$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 45 | (1,43,7,5,44,6)(2,42,8,4,45,10)(3,41,9)(11,26,25,36,17,31)(12,30,21,40,18,35)(13,29,22,39,19,34)(14,28,23,38,20,33)(15,27,24,37,16,32), (1,12,2,13,3,14,4,15,5,11)(6,16,9,19,7,17,10,20,8,18)(21,43,22,44,23,45,24,41,25,42)(26,27,28,29,30)(31,33,35,32,34)(36,38,40,37,39) >;
 
Copy content gap:G := Group( (1,43,7,5,44,6)(2,42,8,4,45,10)(3,41,9)(11,26,25,36,17,31)(12,30,21,40,18,35)(13,29,22,39,19,34)(14,28,23,38,20,33)(15,27,24,37,16,32), (1,12,2,13,3,14,4,15,5,11)(6,16,9,19,7,17,10,20,8,18)(21,43,22,44,23,45,24,41,25,42)(26,27,28,29,30)(31,33,35,32,34)(36,38,40,37,39) );
 
Copy content sage:G = PermutationGroup(['(1,43,7,5,44,6)(2,42,8,4,45,10)(3,41,9)(11,26,25,36,17,31)(12,30,21,40,18,35)(13,29,22,39,19,34)(14,28,23,38,20,33)(15,27,24,37,16,32)', '(1,12,2,13,3,14,4,15,5,11)(6,16,9,19,7,17,10,20,8,18)(21,43,22,44,23,45,24,41,25,42)(26,27,28,29,30)(31,33,35,32,34)(36,38,40,37,39)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(4762805486585041820910452241212197609016476850228238567725966636017797072447482791374605488588881368832235764373857387537383538911176844741783698984406658072719186952845910247313314750431621507704424112863033674680982360053654583279367783543987808915538706235664971092813002282850920332374376380940820943009277326450882249028823371113516071267292971572494148344934635211415551,5062500)'); a = G.1; b = G.3; c = G.5; d = G.6; e = G.8; f = G.9; g = G.10; h = G.11; i = G.12;
 

Group information

Description:$C_5^6:(C_3^3:D_6)$
Order: \(5062500\)\(\medspace = 2^{2} \cdot 3^{4} \cdot 5^{6} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_5^6.\He_3.C_{12}.C_2^3$, of order \(40500000\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5^{6} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 2, $C_3$ x 4, $C_5$ x 6
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 5 6 9 10 15 18 30
Elements 1 21475 143900 15624 2127500 562500 275400 543600 562500 810000 5062500
Conjugacy classes   1 3 10 84 26 2 44 64 2 24 260
Divisions 1 3 6 42 14 1 22 18 1 6 114
Autjugacy classes 1 3 6 16 14 1 9 9 1 3 63

Copy content comment:Compute statistics about the characters of G
 
Copy content magma:// Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content gap:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content sage:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i character_degrees = [c[0] for c in G.character_table()] [[n, character_degrees.count(n)] for n in set(character_degrees)]
 
Copy content sage_gap:G.CharacterDegrees()
 

Dimension 1 2 3 4 6 18 36 54 72 108 144 162 216 324 432 648
Irr. complex chars.   12 6 24 0 2 24 12 56 0 40 0 56 0 28 0 0 260
Irr. rational chars. 4 6 0 2 14 0 4 0 6 12 2 0 16 28 6 14 114

Minimal presentations

Permutation degree:$45$
Transitive degree:$45$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 18 18 36
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i \mid a^{6}=b^{6}=d^{15}=e^{5}=f^{5}=g^{5}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([12, -2, -3, -2, -3, -3, 3, -5, 5, 5, 5, 5, 5, 24, 145458938, 52980602, 98, 1601283, 14194095, 42966724, 90124936, 28914868, 22007560, 2727052, 13377317, 106379585, 56286173, 21648641, 7283141, 281, 544326, 97651026, 385590, 15422442, 9320022, 383481223, 1010899, 53136031, 31954219, 56215, 23107, 502135208, 524900, 40678232, 35942660, 29216, 30848, 559677609, 290744661, 78129393, 4377285, 144777, 1600269, 605381050, 137691598, 38099194, 46553014, 755626, 4936210, 131103371, 238248887, 56904803, 30217583, 4065611, 2674151]); a,b,c,d,e,f,g,h,i := Explode([G.1, G.3, G.5, G.6, G.8, G.9, G.10, G.11, G.12]); AssignNames(~G, ["a", "a2", "b", "b2", "c", "d", "d3", "e", "f", "g", "h", "i"]);
 
Copy content gap:G := PcGroupCode(4762805486585041820910452241212197609016476850228238567725966636017797072447482791374605488588881368832235764373857387537383538911176844741783698984406658072719186952845910247313314750431621507704424112863033674680982360053654583279367783543987808915538706235664971092813002282850920332374376380940820943009277326450882249028823371113516071267292971572494148344934635211415551,5062500); a := G.1; b := G.3; c := G.5; d := G.6; e := G.8; f := G.9; g := G.10; h := G.11; i := G.12;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(4762805486585041820910452241212197609016476850228238567725966636017797072447482791374605488588881368832235764373857387537383538911176844741783698984406658072719186952845910247313314750431621507704424112863033674680982360053654583279367783543987808915538706235664971092813002282850920332374376380940820943009277326450882249028823371113516071267292971572494148344934635211415551,5062500)'); a = G.1; b = G.3; c = G.5; d = G.6; e = G.8; f = G.9; g = G.10; h = G.11; i = G.12;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(4762805486585041820910452241212197609016476850228238567725966636017797072447482791374605488588881368832235764373857387537383538911176844741783698984406658072719186952845910247313314750431621507704424112863033674680982360053654583279367783543987808915538706235664971092813002282850920332374376380940820943009277326450882249028823371113516071267292971572494148344934635211415551,5062500)'); a = G.1; b = G.3; c = G.5; d = G.6; e = G.8; f = G.9; g = G.10; h = G.11; i = G.12;
 
Permutation group:Degree $45$ $\langle(1,43,7,5,44,6)(2,42,8,4,45,10)(3,41,9)(11,26,25,36,17,31)(12,30,21,40,18,35) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 45 | (1,43,7,5,44,6)(2,42,8,4,45,10)(3,41,9)(11,26,25,36,17,31)(12,30,21,40,18,35)(13,29,22,39,19,34)(14,28,23,38,20,33)(15,27,24,37,16,32), (1,12,2,13,3,14,4,15,5,11)(6,16,9,19,7,17,10,20,8,18)(21,43,22,44,23,45,24,41,25,42)(26,27,28,29,30)(31,33,35,32,34)(36,38,40,37,39) >;
 
Copy content gap:G := Group( (1,43,7,5,44,6)(2,42,8,4,45,10)(3,41,9)(11,26,25,36,17,31)(12,30,21,40,18,35)(13,29,22,39,19,34)(14,28,23,38,20,33)(15,27,24,37,16,32), (1,12,2,13,3,14,4,15,5,11)(6,16,9,19,7,17,10,20,8,18)(21,43,22,44,23,45,24,41,25,42)(26,27,28,29,30)(31,33,35,32,34)(36,38,40,37,39) );
 
Copy content sage:G = PermutationGroup(['(1,43,7,5,44,6)(2,42,8,4,45,10)(3,41,9)(11,26,25,36,17,31)(12,30,21,40,18,35)(13,29,22,39,19,34)(14,28,23,38,20,33)(15,27,24,37,16,32)', '(1,12,2,13,3,14,4,15,5,11)(6,16,9,19,7,17,10,20,8,18)(21,43,22,44,23,45,24,41,25,42)(26,27,28,29,30)(31,33,35,32,34)(36,38,40,37,39)'])
 
Transitive group: 45T2343 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: $C_5^6$ $\,\rtimes\,$ $(C_3^3:D_6)$ $(C_5^6:C_3\wr C_3)$ $\,\rtimes\,$ $C_2^2$ more information
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_5^6.C_3^3)$ . $D_6$ $(C_5^6:C_3\wr S_3)$ . $C_2$ $(C_5^6:C_3\wr S_3)$ . $C_2$ $(C_5^6.C_3^3.C_2)$ . $S_3$ all 15

Elements of the group are displayed as words in the presentation generators from the presentation above.

Homology

Abelianization: $C_{2} \times C_{6} \simeq C_{2}^{2} \times C_{3}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 19 normal subgroups, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_1$ $G/Z \simeq$ $C_5^6:(C_3^3:D_6)$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_5^6:\He_3$ $G/G' \simeq$ $C_2\times C_6$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_1$ $G/\Phi \simeq$ $C_5^6:(C_3^3:D_6)$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_5^6$ $G/\operatorname{Fit} \simeq$ $C_3^3:D_6$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_5^6:(C_3^3:D_6)$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_5^6$ $G/\operatorname{soc} \simeq$ $C_3^3:D_6$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3\wr C_3$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5^6$

Subgroup diagram and profile

Series

Derived series $C_5^6:(C_3^3:D_6)$ $\rhd$ $C_5^6:\He_3$ $\rhd$ $C_5^6:C_3$ $\rhd$ $C_5^6$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_5^6:(C_3^3:D_6)$ $\rhd$ $C_5^6:(C_3^3:C_6)$ $\rhd$ $C_5^6:(C_2\times \He_3)$ $\rhd$ $C_5^6:\He_3$ $\rhd$ $C_5^6:C_3^2$ $\rhd$ $C_5^6:C_3$ $\rhd$ $C_5^6$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_5^6:(C_3^3:D_6)$ $\rhd$ $C_5^6:\He_3$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 7 larger groups in the database.

This group is a maximal quotient of 2 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

See the $260 \times 260$ character table (warning: may be slow to load). Alternatively, you may search for characters of this group with desired properties.

Rational character table

See the $114 \times 114$ rational character table.