Properties

Label 501350400.a
Order \( 2^{17} \cdot 3^{2} \cdot 5^{2} \cdot 17 \)
Exponent \( 2^{4} \cdot 3 \cdot 5 \cdot 17 \)
Nilpotent no
Solvable no
$\card{G^{\mathrm{ab}}}$ \( 2 \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{18} \cdot 3^{2} \cdot 5^{2} \cdot 17 \)
$\card{\mathrm{Out}(G)}$ \( 2 \)
Perm deg. $256$
Trans deg. $256$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 256 | (2,3,4)(5,9,13)(6,11,16)(7,12,14)(8,10,15)(17,49,33)(18,51,36)(19,52,34)(20,50,35)(21,57,45)(22,59,48)(23,60,46)(24,58,47)(25,61,37)(26,63,40)(27,64,38)(28,62,39)(29,53,41)(30,55,44)(31,56,42)(32,54,43)(65,193,129)(66,195,132)(67,196,130)(68,194,131)(69,201,141)(70,203,144)(71,204,142)(72,202,143)(73,205,133)(74,207,136)(75,208,134)(76,206,135)(77,197,137)(78,199,140)(79,200,138)(80,198,139)(81,241,161)(82,243,164)(83,244,162)(84,242,163)(85,249,173)(86,251,176)(87,252,174)(88,250,175)(89,253,165)(90,255,168)(91,256,166)(92,254,167)(93,245,169)(94,247,172)(95,248,170)(96,246,171)(97,209,177)(98,211,180)(99,212,178)(100,210,179)(101,217,189)(102,219,192)(103,220,190)(104,218,191)(105,221,181)(106,223,184)(107,224,182)(108,222,183)(109,213,185)(110,215,188)(111,216,186)(112,214,187)(113,225,145)(114,227,148)(115,228,146)(116,226,147)(117,233,157)(118,235,160)(119,236,158)(120,234,159)(121,237,149)(122,239,152)(123,240,150)(124,238,151)(125,229,153)(126,231,156)(127,232,154)(128,230,155), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)(41,42)(43,44)(45,46)(47,48)(49,50)(51,52)(53,54)(55,56)(57,58)(59,60)(61,62)(63,64)(65,66)(67,68)(69,70)(71,72)(73,74)(75,76)(77,78)(79,80)(81,82)(83,84)(85,86)(87,88)(89,90)(91,92)(93,94)(95,96)(97,98)(99,100)(101,102)(103,104)(105,106)(107,108)(109,110)(111,112)(113,114)(115,116)(117,118)(119,120)(121,122)(123,124)(125,126)(127,128)(129,130)(131,132)(133,134)(135,136)(137,138)(139,140)(141,142)(143,144)(145,146)(147,148)(149,150)(151,152)(153,154)(155,156)(157,158)(159,160)(161,162)(163,164)(165,166)(167,168)(169,170)(171,172)(173,174)(175,176)(177,178)(179,180)(181,182)(183,184)(185,186)(187,188)(189,190)(191,192)(193,194)(195,196)(197,198)(199,200)(201,202)(203,204)(205,206)(207,208)(209,210)(211,212)(213,214)(215,216)(217,218)(219,220)(221,222)(223,224)(225,226)(227,228)(229,230)(231,232)(233,234)(235,236)(237,238)(239,240)(241,242)(243,244)(245,246)(247,248)(249,250)(251,252)(253,254)(255,256), (2,22,81,65,5)(3,43,161,129,9)(4,64,241,193,13)(6,21,70,17,69)(7,44,182,209,73)(8,63,230,145,77)(10,24,123,225,133)(11,41,139,33,137)(12,62,219,97,141)(14,23,112,177,197)(15,42,160,113,201)(16,61,208,49,205)(18,82,86,85,66)(19,111,166,149,78)(20,124,246,213,74)(25,71,48,181,198)(26,84,128,245,194)(27,109,144,53,206)(28,122,224,117,202)(29,72,59,229,134)(30,83,107,165,130)(31,110,155,101,142)(32,121,203,37,138)(34,158,91,105,143)(35,163,171,169,131)(36,184,251,233,135)(38,157,80,57,207)(39,164,192,249,195)(40,183,240,185,199)(45,140,54,217,75)(46,159,102,153,79)(47,162,150,89,67)(50,218,96,125,204)(51,231,176,189,200)(52,244,256,253,196)(55,232,187,237,136)(56,243,235,173,132)(58,220,118,221,76)(60,242,214,93,68)(87,108,178,210,94)(88,127,226,146,90)(92,126,223,98,154)(95,106,156,114,222)(99,167,172,190,211)(100,180,252,254,215)(103,168,191,238,147)(104,179,239,174,151)(115,227,175,170,152)(116,248,255,234,148)(119,228,188,250,216)(120,247,236,186,212), (3,4)(7,8)(9,13)(10,14)(11,16)(12,15)(19,20)(23,24)(25,29)(26,30)(27,32)(28,31)(33,49)(34,50)(35,52)(36,51)(37,53)(38,54)(39,56)(40,55)(41,61)(42,62)(43,64)(44,63)(45,57)(46,58)(47,60)(48,59)(67,68)(71,72)(73,77)(74,78)(75,80)(76,79)(83,84)(87,88)(89,93)(90,94)(91,96)(92,95)(97,113)(98,114)(99,116)(100,115)(101,117)(102,118)(103,120)(104,119)(105,125)(106,126)(107,128)(108,127)(109,121)(110,122)(111,124)(112,123)(129,193)(130,194)(131,196)(132,195)(133,197)(134,198)(135,200)(136,199)(137,205)(138,206)(139,208)(140,207)(141,201)(142,202)(143,204)(144,203)(145,209)(146,210)(147,212)(148,211)(149,213)(150,214)(151,216)(152,215)(153,221)(154,222)(155,224)(156,223)(157,217)(158,218)(159,220)(160,219)(161,241)(162,242)(163,244)(164,243)(165,245)(166,246)(167,248)(168,247)(169,253)(170,254)(171,256)(172,255)(173,249)(174,250)(175,252)(176,251)(177,225)(178,226)(179,228)(180,227)(181,229)(182,230)(183,232)(184,231)(185,237)(186,238)(187,240)(188,239)(189,233)(190,234)(191,236)(192,235) >;
 
Copy content gap:G := Group( (2,3,4)(5,9,13)(6,11,16)(7,12,14)(8,10,15)(17,49,33)(18,51,36)(19,52,34)(20,50,35)(21,57,45)(22,59,48)(23,60,46)(24,58,47)(25,61,37)(26,63,40)(27,64,38)(28,62,39)(29,53,41)(30,55,44)(31,56,42)(32,54,43)(65,193,129)(66,195,132)(67,196,130)(68,194,131)(69,201,141)(70,203,144)(71,204,142)(72,202,143)(73,205,133)(74,207,136)(75,208,134)(76,206,135)(77,197,137)(78,199,140)(79,200,138)(80,198,139)(81,241,161)(82,243,164)(83,244,162)(84,242,163)(85,249,173)(86,251,176)(87,252,174)(88,250,175)(89,253,165)(90,255,168)(91,256,166)(92,254,167)(93,245,169)(94,247,172)(95,248,170)(96,246,171)(97,209,177)(98,211,180)(99,212,178)(100,210,179)(101,217,189)(102,219,192)(103,220,190)(104,218,191)(105,221,181)(106,223,184)(107,224,182)(108,222,183)(109,213,185)(110,215,188)(111,216,186)(112,214,187)(113,225,145)(114,227,148)(115,228,146)(116,226,147)(117,233,157)(118,235,160)(119,236,158)(120,234,159)(121,237,149)(122,239,152)(123,240,150)(124,238,151)(125,229,153)(126,231,156)(127,232,154)(128,230,155), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)(41,42)(43,44)(45,46)(47,48)(49,50)(51,52)(53,54)(55,56)(57,58)(59,60)(61,62)(63,64)(65,66)(67,68)(69,70)(71,72)(73,74)(75,76)(77,78)(79,80)(81,82)(83,84)(85,86)(87,88)(89,90)(91,92)(93,94)(95,96)(97,98)(99,100)(101,102)(103,104)(105,106)(107,108)(109,110)(111,112)(113,114)(115,116)(117,118)(119,120)(121,122)(123,124)(125,126)(127,128)(129,130)(131,132)(133,134)(135,136)(137,138)(139,140)(141,142)(143,144)(145,146)(147,148)(149,150)(151,152)(153,154)(155,156)(157,158)(159,160)(161,162)(163,164)(165,166)(167,168)(169,170)(171,172)(173,174)(175,176)(177,178)(179,180)(181,182)(183,184)(185,186)(187,188)(189,190)(191,192)(193,194)(195,196)(197,198)(199,200)(201,202)(203,204)(205,206)(207,208)(209,210)(211,212)(213,214)(215,216)(217,218)(219,220)(221,222)(223,224)(225,226)(227,228)(229,230)(231,232)(233,234)(235,236)(237,238)(239,240)(241,242)(243,244)(245,246)(247,248)(249,250)(251,252)(253,254)(255,256), (2,22,81,65,5)(3,43,161,129,9)(4,64,241,193,13)(6,21,70,17,69)(7,44,182,209,73)(8,63,230,145,77)(10,24,123,225,133)(11,41,139,33,137)(12,62,219,97,141)(14,23,112,177,197)(15,42,160,113,201)(16,61,208,49,205)(18,82,86,85,66)(19,111,166,149,78)(20,124,246,213,74)(25,71,48,181,198)(26,84,128,245,194)(27,109,144,53,206)(28,122,224,117,202)(29,72,59,229,134)(30,83,107,165,130)(31,110,155,101,142)(32,121,203,37,138)(34,158,91,105,143)(35,163,171,169,131)(36,184,251,233,135)(38,157,80,57,207)(39,164,192,249,195)(40,183,240,185,199)(45,140,54,217,75)(46,159,102,153,79)(47,162,150,89,67)(50,218,96,125,204)(51,231,176,189,200)(52,244,256,253,196)(55,232,187,237,136)(56,243,235,173,132)(58,220,118,221,76)(60,242,214,93,68)(87,108,178,210,94)(88,127,226,146,90)(92,126,223,98,154)(95,106,156,114,222)(99,167,172,190,211)(100,180,252,254,215)(103,168,191,238,147)(104,179,239,174,151)(115,227,175,170,152)(116,248,255,234,148)(119,228,188,250,216)(120,247,236,186,212), (3,4)(7,8)(9,13)(10,14)(11,16)(12,15)(19,20)(23,24)(25,29)(26,30)(27,32)(28,31)(33,49)(34,50)(35,52)(36,51)(37,53)(38,54)(39,56)(40,55)(41,61)(42,62)(43,64)(44,63)(45,57)(46,58)(47,60)(48,59)(67,68)(71,72)(73,77)(74,78)(75,80)(76,79)(83,84)(87,88)(89,93)(90,94)(91,96)(92,95)(97,113)(98,114)(99,116)(100,115)(101,117)(102,118)(103,120)(104,119)(105,125)(106,126)(107,128)(108,127)(109,121)(110,122)(111,124)(112,123)(129,193)(130,194)(131,196)(132,195)(133,197)(134,198)(135,200)(136,199)(137,205)(138,206)(139,208)(140,207)(141,201)(142,202)(143,204)(144,203)(145,209)(146,210)(147,212)(148,211)(149,213)(150,214)(151,216)(152,215)(153,221)(154,222)(155,224)(156,223)(157,217)(158,218)(159,220)(160,219)(161,241)(162,242)(163,244)(164,243)(165,245)(166,246)(167,248)(168,247)(169,253)(170,254)(171,256)(172,255)(173,249)(174,250)(175,252)(176,251)(177,225)(178,226)(179,228)(180,227)(181,229)(182,230)(183,232)(184,231)(185,237)(186,238)(187,240)(188,239)(189,233)(190,234)(191,236)(192,235) );
 
Copy content sage:G = PermutationGroup(['(2,3,4)(5,9,13)(6,11,16)(7,12,14)(8,10,15)(17,49,33)(18,51,36)(19,52,34)(20,50,35)(21,57,45)(22,59,48)(23,60,46)(24,58,47)(25,61,37)(26,63,40)(27,64,38)(28,62,39)(29,53,41)(30,55,44)(31,56,42)(32,54,43)(65,193,129)(66,195,132)(67,196,130)(68,194,131)(69,201,141)(70,203,144)(71,204,142)(72,202,143)(73,205,133)(74,207,136)(75,208,134)(76,206,135)(77,197,137)(78,199,140)(79,200,138)(80,198,139)(81,241,161)(82,243,164)(83,244,162)(84,242,163)(85,249,173)(86,251,176)(87,252,174)(88,250,175)(89,253,165)(90,255,168)(91,256,166)(92,254,167)(93,245,169)(94,247,172)(95,248,170)(96,246,171)(97,209,177)(98,211,180)(99,212,178)(100,210,179)(101,217,189)(102,219,192)(103,220,190)(104,218,191)(105,221,181)(106,223,184)(107,224,182)(108,222,183)(109,213,185)(110,215,188)(111,216,186)(112,214,187)(113,225,145)(114,227,148)(115,228,146)(116,226,147)(117,233,157)(118,235,160)(119,236,158)(120,234,159)(121,237,149)(122,239,152)(123,240,150)(124,238,151)(125,229,153)(126,231,156)(127,232,154)(128,230,155)', '(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)(41,42)(43,44)(45,46)(47,48)(49,50)(51,52)(53,54)(55,56)(57,58)(59,60)(61,62)(63,64)(65,66)(67,68)(69,70)(71,72)(73,74)(75,76)(77,78)(79,80)(81,82)(83,84)(85,86)(87,88)(89,90)(91,92)(93,94)(95,96)(97,98)(99,100)(101,102)(103,104)(105,106)(107,108)(109,110)(111,112)(113,114)(115,116)(117,118)(119,120)(121,122)(123,124)(125,126)(127,128)(129,130)(131,132)(133,134)(135,136)(137,138)(139,140)(141,142)(143,144)(145,146)(147,148)(149,150)(151,152)(153,154)(155,156)(157,158)(159,160)(161,162)(163,164)(165,166)(167,168)(169,170)(171,172)(173,174)(175,176)(177,178)(179,180)(181,182)(183,184)(185,186)(187,188)(189,190)(191,192)(193,194)(195,196)(197,198)(199,200)(201,202)(203,204)(205,206)(207,208)(209,210)(211,212)(213,214)(215,216)(217,218)(219,220)(221,222)(223,224)(225,226)(227,228)(229,230)(231,232)(233,234)(235,236)(237,238)(239,240)(241,242)(243,244)(245,246)(247,248)(249,250)(251,252)(253,254)(255,256)', '(2,22,81,65,5)(3,43,161,129,9)(4,64,241,193,13)(6,21,70,17,69)(7,44,182,209,73)(8,63,230,145,77)(10,24,123,225,133)(11,41,139,33,137)(12,62,219,97,141)(14,23,112,177,197)(15,42,160,113,201)(16,61,208,49,205)(18,82,86,85,66)(19,111,166,149,78)(20,124,246,213,74)(25,71,48,181,198)(26,84,128,245,194)(27,109,144,53,206)(28,122,224,117,202)(29,72,59,229,134)(30,83,107,165,130)(31,110,155,101,142)(32,121,203,37,138)(34,158,91,105,143)(35,163,171,169,131)(36,184,251,233,135)(38,157,80,57,207)(39,164,192,249,195)(40,183,240,185,199)(45,140,54,217,75)(46,159,102,153,79)(47,162,150,89,67)(50,218,96,125,204)(51,231,176,189,200)(52,244,256,253,196)(55,232,187,237,136)(56,243,235,173,132)(58,220,118,221,76)(60,242,214,93,68)(87,108,178,210,94)(88,127,226,146,90)(92,126,223,98,154)(95,106,156,114,222)(99,167,172,190,211)(100,180,252,254,215)(103,168,191,238,147)(104,179,239,174,151)(115,227,175,170,152)(116,248,255,234,148)(119,228,188,250,216)(120,247,236,186,212)', '(3,4)(7,8)(9,13)(10,14)(11,16)(12,15)(19,20)(23,24)(25,29)(26,30)(27,32)(28,31)(33,49)(34,50)(35,52)(36,51)(37,53)(38,54)(39,56)(40,55)(41,61)(42,62)(43,64)(44,63)(45,57)(46,58)(47,60)(48,59)(67,68)(71,72)(73,77)(74,78)(75,80)(76,79)(83,84)(87,88)(89,93)(90,94)(91,96)(92,95)(97,113)(98,114)(99,116)(100,115)(101,117)(102,118)(103,120)(104,119)(105,125)(106,126)(107,128)(108,127)(109,121)(110,122)(111,124)(112,123)(129,193)(130,194)(131,196)(132,195)(133,197)(134,198)(135,200)(136,199)(137,205)(138,206)(139,208)(140,207)(141,201)(142,202)(143,204)(144,203)(145,209)(146,210)(147,212)(148,211)(149,213)(150,214)(151,216)(152,215)(153,221)(154,222)(155,224)(156,223)(157,217)(158,218)(159,220)(160,219)(161,241)(162,242)(163,244)(164,243)(165,245)(166,246)(167,248)(168,247)(169,253)(170,254)(171,256)(172,255)(173,249)(174,250)(175,252)(176,251)(177,225)(178,226)(179,228)(180,227)(181,229)(182,230)(183,232)(184,231)(185,237)(186,238)(187,240)(188,239)(189,233)(190,234)(191,236)(192,235)'])
 

Group information

Description:$\ASigmaSp(4,4)$
Order: \(501350400\)\(\medspace = 2^{17} \cdot 3^{2} \cdot 5^{2} \cdot 17 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(4080\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 17 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(1002700800\)\(\medspace = 2^{18} \cdot 3^{2} \cdot 5^{2} \cdot 17 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 9, $\Sp(4,4)$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$1$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and nonsolvable.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 5 6 8 10 12 15 16 17 20 24
Elements 1 103615 1479680 13104960 11802624 44825600 61363200 83036160 88780800 66846720 31334400 58982400 18800640 20889600 501350400
Conjugacy classes   1 6 2 14 3 5 10 4 5 2 2 2 3 1 60
Divisions 1 6 2 14 3 5 9 4 5 2 1 1 2 1 56
Autjugacy classes 1 6 2 14 3 5 10 4 5 2 2 2 3 1 60

Copy content comment:Compute statistics about the characters of G
 
Copy content magma:// Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content gap:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content sage:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i character_degrees = [c[0] for c in G.character_table()] [[n, character_degrees.count(n)] for n in set(character_degrees)]
 
Copy content sage_gap:G.CharacterDegrees()
 

Dimension 1 18 34 36 50 85 102 153 255 256 340 408 450 510 900 1020 1275 1530 2550 3060 3825 5100 6120 7650 10200 12240
Irr. complex chars.   2 2 4 0 2 4 2 2 2 2 4 2 2 2 0 2 2 5 4 2 4 4 3 1 1 0 60
Irr. rational chars. 2 0 4 1 2 4 2 2 2 2 4 2 0 2 1 2 2 3 4 3 4 4 1 1 1 1 56

Minimal presentations

Permutation degree:$256$
Transitive degree:$256$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 255 255 255
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Groups of Lie type:$\ASigmaSp(4,4)$
Permutation group:Degree $256$ $\langle(2,3,4)(5,9,13)(6,11,16)(7,12,14)(8,10,15)(17,49,33)(18,51,36)(19,52,34) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 256 | (2,3,4)(5,9,13)(6,11,16)(7,12,14)(8,10,15)(17,49,33)(18,51,36)(19,52,34)(20,50,35)(21,57,45)(22,59,48)(23,60,46)(24,58,47)(25,61,37)(26,63,40)(27,64,38)(28,62,39)(29,53,41)(30,55,44)(31,56,42)(32,54,43)(65,193,129)(66,195,132)(67,196,130)(68,194,131)(69,201,141)(70,203,144)(71,204,142)(72,202,143)(73,205,133)(74,207,136)(75,208,134)(76,206,135)(77,197,137)(78,199,140)(79,200,138)(80,198,139)(81,241,161)(82,243,164)(83,244,162)(84,242,163)(85,249,173)(86,251,176)(87,252,174)(88,250,175)(89,253,165)(90,255,168)(91,256,166)(92,254,167)(93,245,169)(94,247,172)(95,248,170)(96,246,171)(97,209,177)(98,211,180)(99,212,178)(100,210,179)(101,217,189)(102,219,192)(103,220,190)(104,218,191)(105,221,181)(106,223,184)(107,224,182)(108,222,183)(109,213,185)(110,215,188)(111,216,186)(112,214,187)(113,225,145)(114,227,148)(115,228,146)(116,226,147)(117,233,157)(118,235,160)(119,236,158)(120,234,159)(121,237,149)(122,239,152)(123,240,150)(124,238,151)(125,229,153)(126,231,156)(127,232,154)(128,230,155), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)(41,42)(43,44)(45,46)(47,48)(49,50)(51,52)(53,54)(55,56)(57,58)(59,60)(61,62)(63,64)(65,66)(67,68)(69,70)(71,72)(73,74)(75,76)(77,78)(79,80)(81,82)(83,84)(85,86)(87,88)(89,90)(91,92)(93,94)(95,96)(97,98)(99,100)(101,102)(103,104)(105,106)(107,108)(109,110)(111,112)(113,114)(115,116)(117,118)(119,120)(121,122)(123,124)(125,126)(127,128)(129,130)(131,132)(133,134)(135,136)(137,138)(139,140)(141,142)(143,144)(145,146)(147,148)(149,150)(151,152)(153,154)(155,156)(157,158)(159,160)(161,162)(163,164)(165,166)(167,168)(169,170)(171,172)(173,174)(175,176)(177,178)(179,180)(181,182)(183,184)(185,186)(187,188)(189,190)(191,192)(193,194)(195,196)(197,198)(199,200)(201,202)(203,204)(205,206)(207,208)(209,210)(211,212)(213,214)(215,216)(217,218)(219,220)(221,222)(223,224)(225,226)(227,228)(229,230)(231,232)(233,234)(235,236)(237,238)(239,240)(241,242)(243,244)(245,246)(247,248)(249,250)(251,252)(253,254)(255,256), (2,22,81,65,5)(3,43,161,129,9)(4,64,241,193,13)(6,21,70,17,69)(7,44,182,209,73)(8,63,230,145,77)(10,24,123,225,133)(11,41,139,33,137)(12,62,219,97,141)(14,23,112,177,197)(15,42,160,113,201)(16,61,208,49,205)(18,82,86,85,66)(19,111,166,149,78)(20,124,246,213,74)(25,71,48,181,198)(26,84,128,245,194)(27,109,144,53,206)(28,122,224,117,202)(29,72,59,229,134)(30,83,107,165,130)(31,110,155,101,142)(32,121,203,37,138)(34,158,91,105,143)(35,163,171,169,131)(36,184,251,233,135)(38,157,80,57,207)(39,164,192,249,195)(40,183,240,185,199)(45,140,54,217,75)(46,159,102,153,79)(47,162,150,89,67)(50,218,96,125,204)(51,231,176,189,200)(52,244,256,253,196)(55,232,187,237,136)(56,243,235,173,132)(58,220,118,221,76)(60,242,214,93,68)(87,108,178,210,94)(88,127,226,146,90)(92,126,223,98,154)(95,106,156,114,222)(99,167,172,190,211)(100,180,252,254,215)(103,168,191,238,147)(104,179,239,174,151)(115,227,175,170,152)(116,248,255,234,148)(119,228,188,250,216)(120,247,236,186,212), (3,4)(7,8)(9,13)(10,14)(11,16)(12,15)(19,20)(23,24)(25,29)(26,30)(27,32)(28,31)(33,49)(34,50)(35,52)(36,51)(37,53)(38,54)(39,56)(40,55)(41,61)(42,62)(43,64)(44,63)(45,57)(46,58)(47,60)(48,59)(67,68)(71,72)(73,77)(74,78)(75,80)(76,79)(83,84)(87,88)(89,93)(90,94)(91,96)(92,95)(97,113)(98,114)(99,116)(100,115)(101,117)(102,118)(103,120)(104,119)(105,125)(106,126)(107,128)(108,127)(109,121)(110,122)(111,124)(112,123)(129,193)(130,194)(131,196)(132,195)(133,197)(134,198)(135,200)(136,199)(137,205)(138,206)(139,208)(140,207)(141,201)(142,202)(143,204)(144,203)(145,209)(146,210)(147,212)(148,211)(149,213)(150,214)(151,216)(152,215)(153,221)(154,222)(155,224)(156,223)(157,217)(158,218)(159,220)(160,219)(161,241)(162,242)(163,244)(164,243)(165,245)(166,246)(167,248)(168,247)(169,253)(170,254)(171,256)(172,255)(173,249)(174,250)(175,252)(176,251)(177,225)(178,226)(179,228)(180,227)(181,229)(182,230)(183,232)(184,231)(185,237)(186,238)(187,240)(188,239)(189,233)(190,234)(191,236)(192,235) >;
 
Copy content gap:G := Group( (2,3,4)(5,9,13)(6,11,16)(7,12,14)(8,10,15)(17,49,33)(18,51,36)(19,52,34)(20,50,35)(21,57,45)(22,59,48)(23,60,46)(24,58,47)(25,61,37)(26,63,40)(27,64,38)(28,62,39)(29,53,41)(30,55,44)(31,56,42)(32,54,43)(65,193,129)(66,195,132)(67,196,130)(68,194,131)(69,201,141)(70,203,144)(71,204,142)(72,202,143)(73,205,133)(74,207,136)(75,208,134)(76,206,135)(77,197,137)(78,199,140)(79,200,138)(80,198,139)(81,241,161)(82,243,164)(83,244,162)(84,242,163)(85,249,173)(86,251,176)(87,252,174)(88,250,175)(89,253,165)(90,255,168)(91,256,166)(92,254,167)(93,245,169)(94,247,172)(95,248,170)(96,246,171)(97,209,177)(98,211,180)(99,212,178)(100,210,179)(101,217,189)(102,219,192)(103,220,190)(104,218,191)(105,221,181)(106,223,184)(107,224,182)(108,222,183)(109,213,185)(110,215,188)(111,216,186)(112,214,187)(113,225,145)(114,227,148)(115,228,146)(116,226,147)(117,233,157)(118,235,160)(119,236,158)(120,234,159)(121,237,149)(122,239,152)(123,240,150)(124,238,151)(125,229,153)(126,231,156)(127,232,154)(128,230,155), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)(41,42)(43,44)(45,46)(47,48)(49,50)(51,52)(53,54)(55,56)(57,58)(59,60)(61,62)(63,64)(65,66)(67,68)(69,70)(71,72)(73,74)(75,76)(77,78)(79,80)(81,82)(83,84)(85,86)(87,88)(89,90)(91,92)(93,94)(95,96)(97,98)(99,100)(101,102)(103,104)(105,106)(107,108)(109,110)(111,112)(113,114)(115,116)(117,118)(119,120)(121,122)(123,124)(125,126)(127,128)(129,130)(131,132)(133,134)(135,136)(137,138)(139,140)(141,142)(143,144)(145,146)(147,148)(149,150)(151,152)(153,154)(155,156)(157,158)(159,160)(161,162)(163,164)(165,166)(167,168)(169,170)(171,172)(173,174)(175,176)(177,178)(179,180)(181,182)(183,184)(185,186)(187,188)(189,190)(191,192)(193,194)(195,196)(197,198)(199,200)(201,202)(203,204)(205,206)(207,208)(209,210)(211,212)(213,214)(215,216)(217,218)(219,220)(221,222)(223,224)(225,226)(227,228)(229,230)(231,232)(233,234)(235,236)(237,238)(239,240)(241,242)(243,244)(245,246)(247,248)(249,250)(251,252)(253,254)(255,256), (2,22,81,65,5)(3,43,161,129,9)(4,64,241,193,13)(6,21,70,17,69)(7,44,182,209,73)(8,63,230,145,77)(10,24,123,225,133)(11,41,139,33,137)(12,62,219,97,141)(14,23,112,177,197)(15,42,160,113,201)(16,61,208,49,205)(18,82,86,85,66)(19,111,166,149,78)(20,124,246,213,74)(25,71,48,181,198)(26,84,128,245,194)(27,109,144,53,206)(28,122,224,117,202)(29,72,59,229,134)(30,83,107,165,130)(31,110,155,101,142)(32,121,203,37,138)(34,158,91,105,143)(35,163,171,169,131)(36,184,251,233,135)(38,157,80,57,207)(39,164,192,249,195)(40,183,240,185,199)(45,140,54,217,75)(46,159,102,153,79)(47,162,150,89,67)(50,218,96,125,204)(51,231,176,189,200)(52,244,256,253,196)(55,232,187,237,136)(56,243,235,173,132)(58,220,118,221,76)(60,242,214,93,68)(87,108,178,210,94)(88,127,226,146,90)(92,126,223,98,154)(95,106,156,114,222)(99,167,172,190,211)(100,180,252,254,215)(103,168,191,238,147)(104,179,239,174,151)(115,227,175,170,152)(116,248,255,234,148)(119,228,188,250,216)(120,247,236,186,212), (3,4)(7,8)(9,13)(10,14)(11,16)(12,15)(19,20)(23,24)(25,29)(26,30)(27,32)(28,31)(33,49)(34,50)(35,52)(36,51)(37,53)(38,54)(39,56)(40,55)(41,61)(42,62)(43,64)(44,63)(45,57)(46,58)(47,60)(48,59)(67,68)(71,72)(73,77)(74,78)(75,80)(76,79)(83,84)(87,88)(89,93)(90,94)(91,96)(92,95)(97,113)(98,114)(99,116)(100,115)(101,117)(102,118)(103,120)(104,119)(105,125)(106,126)(107,128)(108,127)(109,121)(110,122)(111,124)(112,123)(129,193)(130,194)(131,196)(132,195)(133,197)(134,198)(135,200)(136,199)(137,205)(138,206)(139,208)(140,207)(141,201)(142,202)(143,204)(144,203)(145,209)(146,210)(147,212)(148,211)(149,213)(150,214)(151,216)(152,215)(153,221)(154,222)(155,224)(156,223)(157,217)(158,218)(159,220)(160,219)(161,241)(162,242)(163,244)(164,243)(165,245)(166,246)(167,248)(168,247)(169,253)(170,254)(171,256)(172,255)(173,249)(174,250)(175,252)(176,251)(177,225)(178,226)(179,228)(180,227)(181,229)(182,230)(183,232)(184,231)(185,237)(186,238)(187,240)(188,239)(189,233)(190,234)(191,236)(192,235) );
 
Copy content sage:G = PermutationGroup(['(2,3,4)(5,9,13)(6,11,16)(7,12,14)(8,10,15)(17,49,33)(18,51,36)(19,52,34)(20,50,35)(21,57,45)(22,59,48)(23,60,46)(24,58,47)(25,61,37)(26,63,40)(27,64,38)(28,62,39)(29,53,41)(30,55,44)(31,56,42)(32,54,43)(65,193,129)(66,195,132)(67,196,130)(68,194,131)(69,201,141)(70,203,144)(71,204,142)(72,202,143)(73,205,133)(74,207,136)(75,208,134)(76,206,135)(77,197,137)(78,199,140)(79,200,138)(80,198,139)(81,241,161)(82,243,164)(83,244,162)(84,242,163)(85,249,173)(86,251,176)(87,252,174)(88,250,175)(89,253,165)(90,255,168)(91,256,166)(92,254,167)(93,245,169)(94,247,172)(95,248,170)(96,246,171)(97,209,177)(98,211,180)(99,212,178)(100,210,179)(101,217,189)(102,219,192)(103,220,190)(104,218,191)(105,221,181)(106,223,184)(107,224,182)(108,222,183)(109,213,185)(110,215,188)(111,216,186)(112,214,187)(113,225,145)(114,227,148)(115,228,146)(116,226,147)(117,233,157)(118,235,160)(119,236,158)(120,234,159)(121,237,149)(122,239,152)(123,240,150)(124,238,151)(125,229,153)(126,231,156)(127,232,154)(128,230,155)', '(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)(41,42)(43,44)(45,46)(47,48)(49,50)(51,52)(53,54)(55,56)(57,58)(59,60)(61,62)(63,64)(65,66)(67,68)(69,70)(71,72)(73,74)(75,76)(77,78)(79,80)(81,82)(83,84)(85,86)(87,88)(89,90)(91,92)(93,94)(95,96)(97,98)(99,100)(101,102)(103,104)(105,106)(107,108)(109,110)(111,112)(113,114)(115,116)(117,118)(119,120)(121,122)(123,124)(125,126)(127,128)(129,130)(131,132)(133,134)(135,136)(137,138)(139,140)(141,142)(143,144)(145,146)(147,148)(149,150)(151,152)(153,154)(155,156)(157,158)(159,160)(161,162)(163,164)(165,166)(167,168)(169,170)(171,172)(173,174)(175,176)(177,178)(179,180)(181,182)(183,184)(185,186)(187,188)(189,190)(191,192)(193,194)(195,196)(197,198)(199,200)(201,202)(203,204)(205,206)(207,208)(209,210)(211,212)(213,214)(215,216)(217,218)(219,220)(221,222)(223,224)(225,226)(227,228)(229,230)(231,232)(233,234)(235,236)(237,238)(239,240)(241,242)(243,244)(245,246)(247,248)(249,250)(251,252)(253,254)(255,256)', '(2,22,81,65,5)(3,43,161,129,9)(4,64,241,193,13)(6,21,70,17,69)(7,44,182,209,73)(8,63,230,145,77)(10,24,123,225,133)(11,41,139,33,137)(12,62,219,97,141)(14,23,112,177,197)(15,42,160,113,201)(16,61,208,49,205)(18,82,86,85,66)(19,111,166,149,78)(20,124,246,213,74)(25,71,48,181,198)(26,84,128,245,194)(27,109,144,53,206)(28,122,224,117,202)(29,72,59,229,134)(30,83,107,165,130)(31,110,155,101,142)(32,121,203,37,138)(34,158,91,105,143)(35,163,171,169,131)(36,184,251,233,135)(38,157,80,57,207)(39,164,192,249,195)(40,183,240,185,199)(45,140,54,217,75)(46,159,102,153,79)(47,162,150,89,67)(50,218,96,125,204)(51,231,176,189,200)(52,244,256,253,196)(55,232,187,237,136)(56,243,235,173,132)(58,220,118,221,76)(60,242,214,93,68)(87,108,178,210,94)(88,127,226,146,90)(92,126,223,98,154)(95,106,156,114,222)(99,167,172,190,211)(100,180,252,254,215)(103,168,191,238,147)(104,179,239,174,151)(115,227,175,170,152)(116,248,255,234,148)(119,228,188,250,216)(120,247,236,186,212)', '(3,4)(7,8)(9,13)(10,14)(11,16)(12,15)(19,20)(23,24)(25,29)(26,30)(27,32)(28,31)(33,49)(34,50)(35,52)(36,51)(37,53)(38,54)(39,56)(40,55)(41,61)(42,62)(43,64)(44,63)(45,57)(46,58)(47,60)(48,59)(67,68)(71,72)(73,77)(74,78)(75,80)(76,79)(83,84)(87,88)(89,93)(90,94)(91,96)(92,95)(97,113)(98,114)(99,116)(100,115)(101,117)(102,118)(103,120)(104,119)(105,125)(106,126)(107,128)(108,127)(109,121)(110,122)(111,124)(112,123)(129,193)(130,194)(131,196)(132,195)(133,197)(134,198)(135,200)(136,199)(137,205)(138,206)(139,208)(140,207)(141,201)(142,202)(143,204)(144,203)(145,209)(146,210)(147,212)(148,211)(149,213)(150,214)(151,216)(152,215)(153,221)(154,222)(155,224)(156,223)(157,217)(158,218)(159,220)(160,219)(161,241)(162,242)(163,244)(164,243)(165,245)(166,246)(167,248)(168,247)(169,253)(170,254)(171,256)(172,255)(173,249)(174,250)(175,252)(176,251)(177,225)(178,226)(179,228)(180,227)(181,229)(182,230)(183,232)(184,231)(185,237)(186,238)(187,240)(188,239)(189,233)(190,234)(191,236)(192,235)'])
 
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_2^8$ . $\PSigmaSp(4,4)$ $(C_2^8.\Sp(4,4))$ . $C_2$ more information

Elements of the group are displayed as permutations of degree 256.

Homology

Abelianization: $C_{2} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 4 normal subgroups, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $C_2^8.\Sp(4,4)$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^5.C_2^6.D_4^2$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 2 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

See the $60 \times 60$ character table. Alternatively, you may search for characters of this group with desired properties.

Rational character table

See the $56 \times 56$ rational character table.