Properties

Label 46656.ir
Order \( 2^{6} \cdot 3^{6} \)
Exponent \( 2^{2} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{4} \)
$\card{Z(G)}$ \( 1 \)
$\card{\Aut(G)}$ \( 2^{8} \cdot 3^{6} \)
$\card{\mathrm{Out}(G)}$ \( 2^{2} \)
Perm deg. $15$
Trans deg. $36$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 15 | (2,3)(6,8)(7,9)(12,13)(14,15), (1,2,3,5,8,6)(4,7,9)(10,11,13,15)(12,14), (1,2,4,7)(3,6,9)(5,8)(10,12,13)(11,14,15) >;
 
Copy content gap:G := Group( (2,3)(6,8)(7,9)(12,13)(14,15), (1,2,3,5,8,6)(4,7,9)(10,11,13,15)(12,14), (1,2,4,7)(3,6,9)(5,8)(10,12,13)(11,14,15) );
 
Copy content sage:G = PermutationGroup(['(2,3)(6,8)(7,9)(12,13)(14,15)', '(1,2,3,5,8,6)(4,7,9)(10,11,13,15)(12,14)', '(1,2,4,7)(3,6,9)(5,8)(10,12,13)(11,14,15)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(358675344744367769133843535757047509686320414200740099217737416133201649255177009936167077881944382047453400819404948927961566670213393874642944629750975379211603415694513360162177997480692343976306033543711072256899146698813783,46656)'); a = G.1; b = G.2; c = G.5; d = G.7; e = G.9; f = G.11; g = G.12;
 

Group information

Description:$C_3:S_3^4.D_6$
Order: \(46656\)\(\medspace = 2^{6} \cdot 3^{6} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_3^5.A_4.C_8.C_2^3$, of order \(186624\)\(\medspace = 2^{8} \cdot 3^{6} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 6, $C_3$ x 6
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and monomial (hence solvable).

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 9 12 18 36
Elements 1 1359 890 8496 12654 1296 18072 1296 2592 46656
Conjugacy classes   1 11 14 20 46 3 34 1 2 132
Divisions 1 11 14 12 46 3 21 1 1 110
Autjugacy classes 1 11 9 12 33 2 18 1 1 88

Copy content comment:Compute statistics about the characters of G
 
Copy content magma:// Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content gap:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content sage:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i character_degrees = [c[0] for c in G.character_table()] [[n, character_degrees.count(n)] for n in set(character_degrees)]
 
Copy content sage_gap:G.CharacterDegrees()
 

Dimension 1 2 3 4 6 8 12 16 24 32 48 64
Irr. complex chars.   16 8 16 8 16 12 28 4 8 4 10 2 132
Irr. rational chars. 8 8 8 10 12 8 22 4 13 5 10 2 110

Minimal presentations

Permutation degree:$15$
Transitive degree:$36$
Rank: $3$
Inequivalent generating triples: $146764800$

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 24 24 24
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g \mid b^{12}=c^{6}=d^{6}=e^{6}=f^{3}=g^{3}=[a,f]= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([12, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 478368, 1008817, 61, 1083314, 98, 1186179, 865444, 1362256, 116308, 237280, 172, 376721, 1757, 3525990, 1027170, 618438, 114198, 50958, 246, 165895, 668179, 995359, 20779, 43831, 4230152, 278660, 680432, 488960, 42824, 30536, 320, 1313289, 1249941, 164193, 544365, 69177, 11601, 348502, 342178, 767255, 311075, 103727, 31187, 5291]); a,b,c,d,e,f,g := Explode([G.1, G.2, G.5, G.7, G.9, G.11, G.12]); AssignNames(~G, ["a", "b", "b2", "b4", "c", "c2", "d", "d2", "e", "e2", "f", "g"]);
 
Copy content gap:G := PcGroupCode(358675344744367769133843535757047509686320414200740099217737416133201649255177009936167077881944382047453400819404948927961566670213393874642944629750975379211603415694513360162177997480692343976306033543711072256899146698813783,46656); a := G.1; b := G.2; c := G.5; d := G.7; e := G.9; f := G.11; g := G.12;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(358675344744367769133843535757047509686320414200740099217737416133201649255177009936167077881944382047453400819404948927961566670213393874642944629750975379211603415694513360162177997480692343976306033543711072256899146698813783,46656)'); a = G.1; b = G.2; c = G.5; d = G.7; e = G.9; f = G.11; g = G.12;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(358675344744367769133843535757047509686320414200740099217737416133201649255177009936167077881944382047453400819404948927961566670213393874642944629750975379211603415694513360162177997480692343976306033543711072256899146698813783,46656)'); a = G.1; b = G.2; c = G.5; d = G.7; e = G.9; f = G.11; g = G.12;
 
Permutation group:Degree $15$ $\langle(2,3)(6,8)(7,9)(12,13)(14,15), (1,2,3,5,8,6)(4,7,9)(10,11,13,15)(12,14), (1,2,4,7)(3,6,9)(5,8)(10,12,13)(11,14,15)\rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 15 | (2,3)(6,8)(7,9)(12,13)(14,15), (1,2,3,5,8,6)(4,7,9)(10,11,13,15)(12,14), (1,2,4,7)(3,6,9)(5,8)(10,12,13)(11,14,15) >;
 
Copy content gap:G := Group( (2,3)(6,8)(7,9)(12,13)(14,15), (1,2,3,5,8,6)(4,7,9)(10,11,13,15)(12,14), (1,2,4,7)(3,6,9)(5,8)(10,12,13)(11,14,15) );
 
Copy content sage:G = PermutationGroup(['(2,3)(6,8)(7,9)(12,13)(14,15)', '(1,2,3,5,8,6)(4,7,9)(10,11,13,15)(12,14)', '(1,2,4,7)(3,6,9)(5,8)(10,12,13)(11,14,15)'])
 
Transitive group: 36T16101 more information
Direct product: $(C_3^2:C_4)$ $\, \times\, $ $(S_3\wr S_3)$
Semidirect product: $C_3^5$ $\,\rtimes\,$ $(C_2^4.D_6)$ $(C_3\wr C_4:D_6)$ $\,\rtimes\,$ $D_6$ $(C_3^2\times S_3\wr S_3)$ $\,\rtimes\,$ $C_4$ $C_3^2$ $\,\rtimes\,$ $(C_4\times S_3\wr S_3)$ all 42
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Non-split product: $(C_3:S_3^4)$ . $D_6$ $(C_3:S_3)$ . $(S_3^3:D_6)$ $(C_3^4:(D_6\times S_4))$ . $C_2$ $(C_3^4:(S_3\times S_4))$ . $C_2^2$ all 10

Elements of the group are displayed as permutations of degree 15.

Homology

Abelianization: $C_{2}^{2} \times C_{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{3} \times C_{6}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 860936 subgroups in 4970 conjugacy classes, 56 normal, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_1$ $G/Z \simeq$ $C_3:S_3^4.D_6$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_3^5:A_4$ $G/G' \simeq$ $C_2^2\times C_4$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_1$ $G/\Phi \simeq$ $C_3:S_3^4.D_6$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_3^5$ $G/\operatorname{Fit} \simeq$ $C_2^4.D_6$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_3:S_3^4.D_6$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_3^5$ $G/\operatorname{soc} \simeq$ $C_2^4.D_6$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_4^2:C_2^2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^5:C_3$

Subgroup diagram and profile

Series

Derived series $C_3:S_3^4.D_6$ $\rhd$ $C_3:S_3^4.D_6$ $\rhd$ $C_3^5:A_4$ $\rhd$ $C_3^5:A_4$ $\rhd$ $C_3:S_3^2$ $\rhd$ $C_3:S_3^2$ $\rhd$ $C_3^3$ $\rhd$ $C_3^3$ $\rhd$ $C_1$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_3:S_3^4.D_6$ $\rhd$ $C_3:S_3^4.D_6$ $\rhd$ $(C_3^2\times S_3^3):C_{12}$ $\rhd$ $(C_3^2\times S_3^3):C_{12}$ $\rhd$ $C_3^4:(A_4\times D_6)$ $\rhd$ $C_3^4:(A_4\times D_6)$ $\rhd$ $C_3^4:(S_3\times A_4)$ $\rhd$ $C_3^4:(S_3\times A_4)$ $\rhd$ $C_3^5:A_4$ $\rhd$ $C_3^5:A_4$ $\rhd$ $C_3^3:A_4$ $\rhd$ $C_3^3:A_4$ $\rhd$ $C_3:S_3^2$ $\rhd$ $C_3:S_3^2$ $\rhd$ $C_3^3$ $\rhd$ $C_3^3$ $\rhd$ $C_1$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_3:S_3^4.D_6$ $\rhd$ $C_3:S_3^4.D_6$ $\rhd$ $C_3^5:A_4$ $\rhd$ $C_3^5:A_4$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_1$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 5 larger groups in the database.

This group is a maximal quotient of 2 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

See the $132 \times 132$ character table (warning: may be slow to load). Alternatively, you may search for characters of this group with desired properties.

Rational character table

See the $110 \times 110$ rational character table.