Properties

Label 4586471424.x
Order \( 2^{21} \cdot 3^{7} \)
Exponent \( 2^{3} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \)
$\card{Z(G)}$ 2
$\card{\Aut(G)}$ \( 2^{24} \cdot 3^{8} \)
$\card{\mathrm{Out}(G)}$ \( 2^{4} \cdot 3 \)
Perm deg. not computed
Trans deg. $36$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,9,29,23,6,8,26,21,3,12,28,19,2,10,30,24,5,7,25,22,4,11,27,20)(13,33,15,35,17,32)(14,34,16,36,18,31), (1,32,15,22,27,9,2,31,16,21,28,10)(3,34,18,23,26,11,4,33,17,24,25,12)(5,35,14,19,30,7,6,36,13,20,29,8), (1,33,5,31,3,36,2,34,6,32,4,35)(7,14,23,27,10,16,19,26,11,17,22,29,8,13,24,28,9,15,20,25,12,18,21,30) >;
 
Copy content gap:G := Group( (1,9,29,23,6,8,26,21,3,12,28,19,2,10,30,24,5,7,25,22,4,11,27,20)(13,33,15,35,17,32)(14,34,16,36,18,31), (1,32,15,22,27,9,2,31,16,21,28,10)(3,34,18,23,26,11,4,33,17,24,25,12)(5,35,14,19,30,7,6,36,13,20,29,8), (1,33,5,31,3,36,2,34,6,32,4,35)(7,14,23,27,10,16,19,26,11,17,22,29,8,13,24,28,9,15,20,25,12,18,21,30) );
 
Copy content sage:G = PermutationGroup(['(1,9,29,23,6,8,26,21,3,12,28,19,2,10,30,24,5,7,25,22,4,11,27,20)(13,33,15,35,17,32)(14,34,16,36,18,31)', '(1,32,15,22,27,9,2,31,16,21,28,10)(3,34,18,23,26,11,4,33,17,24,25,12)(5,35,14,19,30,7,6,36,13,20,29,8)', '(1,33,5,31,3,36,2,34,6,32,4,35)(7,14,23,27,10,16,19,26,11,17,22,29,8,13,24,28,9,15,20,25,12,18,21,30)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(124781365472887005677636376493420499059196328941600099513616526987038183643777139100974768531346599292619750319889712096034013421265755224681841726877291527617085467436604419265394075425004269559617353887205368146751663860214857268295434621803026502732358458698477223999196866428934251392612639777052883911970797273785062231959805199755384097313308576756506181536212817100783088270452076763196165357459843510839315516898767977603338135564026836054848927625963486884596405755888953651448213727292551674237932510636790125482170557696872302982745769991123487157224476015298010473866832903294833703385823005674284657867401783766471069935783186647394960316062720894053646303893955434135834310961706235440757508891395957087144492066595390035132345207827722556848902364029558619084729542116314639060648828249143507222128096913324961871870380277958216484080123702684009675079902044345240860543084250710376714007998723277083067238639193203283498168529419823005855833697707026411762412377718101272162556170359540609424887878032797379289707918289040846568609988321647504783104350823206491126860111868632794900410372560084606962707227239261694979137050804767991937470889153909645046096002260421385847244259212524577661277666200324962699147539016713976634947529912262579365041779439452459040950355653760999503623783316271179707692778821391663098442350755849107115834663209768616174645338135328412294616117736025683298177191805346395575820821342478576459816366583690104581971455510343568858924616159076989466722185471335281223500149616562411976426700720434758510524528419223646353669160047407391129117715738784526144990582054017119759907446120742876241595413197901609562082134095431803728904779106254267960376258881915655543468553262548973094636917619610832009757643195665671973392024307555742606284677905831370701144491870992408127355227194215845008525555223075568173893826425378032011141654848033803356596477526584843041735850624214871327775057061971686214392534186981333978013803950793800226170720761454597698442676475607187729529807436814912720961948137908381518705308399380674271776688860102842544360811271595236023266236329649400262813789822344352916231961314965147225068593016164953059574085457287681660096782244654337761555399989120049450988371586574476326074766437510015413815607505459184129419303499212484472325720256959478888998876823941973727086118380563681594714526319733604837269668361756791087684208016594273473637147912814435285180543679851725148292204590557264978042965626641089121129074428270643170790556863902092602641454437606446224881323231672823052524463175580790237440919405729878366508657525671252915832853383027392127842498073568648108310344553037819052037264062282159725322266580927751429151984574807475639332586334586000787126886509959361933740636082313816811154608214541133623903144012073928783310106366811839207640133753915286963451040965498782072599587072898023204666699889799016632708316524598569325099908291493792573762025488267157663608828016539128013613968657129472,4586471424)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.10; g = G.12; h = G.14; i = G.16; j = G.17; k = G.18; l = G.19; m = G.20; n = G.21; o = G.22; p = G.23; q = G.24; r = G.25; s = G.26; t = G.27; u = G.28;
 

Group information

Description:$C_2^{12}.(C_3^5.S_4^2:D_4)$
Order: \(4586471424\)\(\medspace = 2^{21} \cdot 3^{7} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(110075314176\)\(\medspace = 2^{24} \cdot 3^{8} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 21, $C_3$ x 7
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$5$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 9 12 18 24 36
Elements 1 1266687 2023136 115190784 663994656 334430208 47112192 2238013440 483729408 382205952 318504960 4586471424
Conjugacy classes   1 320 25 449 3445 20 7 1980 181 4 48 6480
Divisions 1 320 18 449 1956 20 4 1093 91 2 24 3978
Autjugacy classes 1 191 16 147 1200 6 4 342 60 1 6 1974

Minimal presentations

Permutation degree:not computed
Transitive degree:$36$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u \mid c^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([28, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 30386193768, 165828666417, 141, 113560109378, 552593722, 474056700099, 13920043903, 83389074443, 311, 362756896324, 189141294752, 17955162180, 105017665541, 186216250785, 137783942413, 51462411929, 18512269389, 481, 111940307142, 166170676930, 7146493262, 25522514058, 33839949310, 1015655780167, 347670957347, 236472518079, 17464024795, 1167876311, 13459099731, 6291989263, 651, 389278104776, 524258777988, 72627910048, 90599907980, 42239625240, 74466148, 234168152, 645664434249, 46432673317, 281188454465, 73461487773, 16190375161, 472661429, 226548177, 2865369565, 1433573633, 821, 260183342506, 671205782054, 314091727554, 1863449374, 4974498266, 18791255094, 286214722, 95541806, 40118466, 622880391179, 674504361255, 341648762179, 125823269471, 22342485435, 1957266007, 9414377459, 3141222543, 1720511083, 7937255, 282418707, 991, 183020143500, 742052368552, 9782555396, 3335230176, 676952764, 20620087640, 46781460, 3732962896, 1858684700, 5167608, 303582844, 200123090509, 864621184937, 28106616453, 100959167329, 50607734813, 2174123097, 12031616197, 77559761, 1831773117, 56829289, 330947861, 103316625, 55426405, 1161, 1262441496974, 63763822122, 145228930658, 75602782206, 670602394, 11749691702, 2358930, 1967535598, 672447146, 9132774, 112120162, 679356744207, 990634530859, 463866020423, 56405776995, 30245902975, 106299803, 84502839, 48480979, 5540207, 755758347, 4693543, 125943875, 63335007, 1441147, 9964823, 1525977490480, 1030163266988, 480265565544, 49448841220, 32091855392, 28528407084, 14314172224, 382167284, 2375383992, 8019916, 403758728, 11481444, 62204032, 20557868, 1078548, 1531648548881, 1111771422765, 544245972553, 70543973, 6678153345, 28315526557, 14165601593, 4719254613, 2360933809, 22317389, 12791817, 142975045, 71524001, 21860877, 10924609, 167988473874, 110813318830, 55885497770, 133030519878, 28942311010, 1028060366, 497482962, 377486134, 72768266, 22293198, 443560618, 230150, 75420930, 2324158, 11466074, 759552958099, 1157311411247, 57651108555, 145270298983, 4905593411, 33686876319, 16744402267, 449669015, 84369843, 939859471, 9616619, 13144647, 73040035, 2480063, 417051, 1803219068468, 1217906637744, 593845336300, 59575007624, 75937702308, 3417848944, 1692921572, 514001592, 270940060, 13717136, 496601580, 154188040, 77157716, 720096, 13553224, 1623532946133, 105548002609, 53156005133, 148402279977, 35179075141, 35142019073, 1476555885, 5905690777, 234345125, 1053670737, 7384909, 175612073, 1231125, 1764603792022, 1322179625138, 13026394158, 158783460298, 45671877350, 36704329362, 1638819190, 487003322, 285893742, 19057522, 548139614, 169568106, 89455822, 641810, 141450, 916918942487, 1145726539827, 487506491215, 173838825323, 42703863687, 29519126947, 15518599679, 5222932059, 976728055, 56464403, 580826031, 195084619, 98111015, 30929859, 16479199, 1017203443224, 1447619040052, 3577543280, 76555886508, 124505262136, 3010089764, 99376392, 6717438220, 3573687848, 1084709076, 544547104, 194141132, 97536960, 30962788, 15542516, 3261141741337, 1530389506517, 729537943761, 153049334365, 45080806817, 7444670853, 12396253153, 4143327773, 3380046009, 1047586453, 526073489, 30113381, 3409641, 2381314215194, 1572652174518, 264126544498, 197860864430, 8361163578, 32982689542, 22500841802, 804396318, 2901157810, 957894614, 183708306, 56636830, 37721738, 23487798, 5933506, 3266192764827, 1713623518711, 337491246035, 241712495247, 14100943387, 26147391143, 13139274147, 3274351135, 1847458619, 706503447, 318028339, 104880719, 59200203, 14742727, 8432339]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u := Explode([G.1, G.2, G.4, G.6, G.8, G.10, G.12, G.14, G.16, G.17, G.18, G.19, G.20, G.21, G.22, G.23, G.24, G.25, G.26, G.27, G.28]); AssignNames(~G, ["a", "b", "b2", "c", "c2", "d", "d2", "e", "e2", "f", "f2", "g", "g2", "h", "h2", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u"]);
 
Copy content gap:G := PcGroupCode(124781365472887005677636376493420499059196328941600099513616526987038183643777139100974768531346599292619750319889712096034013421265755224681841726877291527617085467436604419265394075425004269559617353887205368146751663860214857268295434621803026502732358458698477223999196866428934251392612639777052883911970797273785062231959805199755384097313308576756506181536212817100783088270452076763196165357459843510839315516898767977603338135564026836054848927625963486884596405755888953651448213727292551674237932510636790125482170557696872302982745769991123487157224476015298010473866832903294833703385823005674284657867401783766471069935783186647394960316062720894053646303893955434135834310961706235440757508891395957087144492066595390035132345207827722556848902364029558619084729542116314639060648828249143507222128096913324961871870380277958216484080123702684009675079902044345240860543084250710376714007998723277083067238639193203283498168529419823005855833697707026411762412377718101272162556170359540609424887878032797379289707918289040846568609988321647504783104350823206491126860111868632794900410372560084606962707227239261694979137050804767991937470889153909645046096002260421385847244259212524577661277666200324962699147539016713976634947529912262579365041779439452459040950355653760999503623783316271179707692778821391663098442350755849107115834663209768616174645338135328412294616117736025683298177191805346395575820821342478576459816366583690104581971455510343568858924616159076989466722185471335281223500149616562411976426700720434758510524528419223646353669160047407391129117715738784526144990582054017119759907446120742876241595413197901609562082134095431803728904779106254267960376258881915655543468553262548973094636917619610832009757643195665671973392024307555742606284677905831370701144491870992408127355227194215845008525555223075568173893826425378032011141654848033803356596477526584843041735850624214871327775057061971686214392534186981333978013803950793800226170720761454597698442676475607187729529807436814912720961948137908381518705308399380674271776688860102842544360811271595236023266236329649400262813789822344352916231961314965147225068593016164953059574085457287681660096782244654337761555399989120049450988371586574476326074766437510015413815607505459184129419303499212484472325720256959478888998876823941973727086118380563681594714526319733604837269668361756791087684208016594273473637147912814435285180543679851725148292204590557264978042965626641089121129074428270643170790556863902092602641454437606446224881323231672823052524463175580790237440919405729878366508657525671252915832853383027392127842498073568648108310344553037819052037264062282159725322266580927751429151984574807475639332586334586000787126886509959361933740636082313816811154608214541133623903144012073928783310106366811839207640133753915286963451040965498782072599587072898023204666699889799016632708316524598569325099908291493792573762025488267157663608828016539128013613968657129472,4586471424); a := G.1; b := G.2; c := G.4; d := G.6; e := G.8; f := G.10; g := G.12; h := G.14; i := G.16; j := G.17; k := G.18; l := G.19; m := G.20; n := G.21; o := G.22; p := G.23; q := G.24; r := G.25; s := G.26; t := G.27; u := G.28;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(124781365472887005677636376493420499059196328941600099513616526987038183643777139100974768531346599292619750319889712096034013421265755224681841726877291527617085467436604419265394075425004269559617353887205368146751663860214857268295434621803026502732358458698477223999196866428934251392612639777052883911970797273785062231959805199755384097313308576756506181536212817100783088270452076763196165357459843510839315516898767977603338135564026836054848927625963486884596405755888953651448213727292551674237932510636790125482170557696872302982745769991123487157224476015298010473866832903294833703385823005674284657867401783766471069935783186647394960316062720894053646303893955434135834310961706235440757508891395957087144492066595390035132345207827722556848902364029558619084729542116314639060648828249143507222128096913324961871870380277958216484080123702684009675079902044345240860543084250710376714007998723277083067238639193203283498168529419823005855833697707026411762412377718101272162556170359540609424887878032797379289707918289040846568609988321647504783104350823206491126860111868632794900410372560084606962707227239261694979137050804767991937470889153909645046096002260421385847244259212524577661277666200324962699147539016713976634947529912262579365041779439452459040950355653760999503623783316271179707692778821391663098442350755849107115834663209768616174645338135328412294616117736025683298177191805346395575820821342478576459816366583690104581971455510343568858924616159076989466722185471335281223500149616562411976426700720434758510524528419223646353669160047407391129117715738784526144990582054017119759907446120742876241595413197901609562082134095431803728904779106254267960376258881915655543468553262548973094636917619610832009757643195665671973392024307555742606284677905831370701144491870992408127355227194215845008525555223075568173893826425378032011141654848033803356596477526584843041735850624214871327775057061971686214392534186981333978013803950793800226170720761454597698442676475607187729529807436814912720961948137908381518705308399380674271776688860102842544360811271595236023266236329649400262813789822344352916231961314965147225068593016164953059574085457287681660096782244654337761555399989120049450988371586574476326074766437510015413815607505459184129419303499212484472325720256959478888998876823941973727086118380563681594714526319733604837269668361756791087684208016594273473637147912814435285180543679851725148292204590557264978042965626641089121129074428270643170790556863902092602641454437606446224881323231672823052524463175580790237440919405729878366508657525671252915832853383027392127842498073568648108310344553037819052037264062282159725322266580927751429151984574807475639332586334586000787126886509959361933740636082313816811154608214541133623903144012073928783310106366811839207640133753915286963451040965498782072599587072898023204666699889799016632708316524598569325099908291493792573762025488267157663608828016539128013613968657129472,4586471424)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.10; g = G.12; h = G.14; i = G.16; j = G.17; k = G.18; l = G.19; m = G.20; n = G.21; o = G.22; p = G.23; q = G.24; r = G.25; s = G.26; t = G.27; u = G.28;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(124781365472887005677636376493420499059196328941600099513616526987038183643777139100974768531346599292619750319889712096034013421265755224681841726877291527617085467436604419265394075425004269559617353887205368146751663860214857268295434621803026502732358458698477223999196866428934251392612639777052883911970797273785062231959805199755384097313308576756506181536212817100783088270452076763196165357459843510839315516898767977603338135564026836054848927625963486884596405755888953651448213727292551674237932510636790125482170557696872302982745769991123487157224476015298010473866832903294833703385823005674284657867401783766471069935783186647394960316062720894053646303893955434135834310961706235440757508891395957087144492066595390035132345207827722556848902364029558619084729542116314639060648828249143507222128096913324961871870380277958216484080123702684009675079902044345240860543084250710376714007998723277083067238639193203283498168529419823005855833697707026411762412377718101272162556170359540609424887878032797379289707918289040846568609988321647504783104350823206491126860111868632794900410372560084606962707227239261694979137050804767991937470889153909645046096002260421385847244259212524577661277666200324962699147539016713976634947529912262579365041779439452459040950355653760999503623783316271179707692778821391663098442350755849107115834663209768616174645338135328412294616117736025683298177191805346395575820821342478576459816366583690104581971455510343568858924616159076989466722185471335281223500149616562411976426700720434758510524528419223646353669160047407391129117715738784526144990582054017119759907446120742876241595413197901609562082134095431803728904779106254267960376258881915655543468553262548973094636917619610832009757643195665671973392024307555742606284677905831370701144491870992408127355227194215845008525555223075568173893826425378032011141654848033803356596477526584843041735850624214871327775057061971686214392534186981333978013803950793800226170720761454597698442676475607187729529807436814912720961948137908381518705308399380674271776688860102842544360811271595236023266236329649400262813789822344352916231961314965147225068593016164953059574085457287681660096782244654337761555399989120049450988371586574476326074766437510015413815607505459184129419303499212484472325720256959478888998876823941973727086118380563681594714526319733604837269668361756791087684208016594273473637147912814435285180543679851725148292204590557264978042965626641089121129074428270643170790556863902092602641454437606446224881323231672823052524463175580790237440919405729878366508657525671252915832853383027392127842498073568648108310344553037819052037264062282159725322266580927751429151984574807475639332586334586000787126886509959361933740636082313816811154608214541133623903144012073928783310106366811839207640133753915286963451040965498782072599587072898023204666699889799016632708316524598569325099908291493792573762025488267157663608828016539128013613968657129472,4586471424)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.10; g = G.12; h = G.14; i = G.16; j = G.17; k = G.18; l = G.19; m = G.20; n = G.21; o = G.22; p = G.23; q = G.24; r = G.25; s = G.26; t = G.27; u = G.28;
 
Permutation group:Degree $36$ $\langle(1,9,29,23,6,8,26,21,3,12,28,19,2,10,30,24,5,7,25,22,4,11,27,20)(13,33,15,35,17,32) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,9,29,23,6,8,26,21,3,12,28,19,2,10,30,24,5,7,25,22,4,11,27,20)(13,33,15,35,17,32)(14,34,16,36,18,31), (1,32,15,22,27,9,2,31,16,21,28,10)(3,34,18,23,26,11,4,33,17,24,25,12)(5,35,14,19,30,7,6,36,13,20,29,8), (1,33,5,31,3,36,2,34,6,32,4,35)(7,14,23,27,10,16,19,26,11,17,22,29,8,13,24,28,9,15,20,25,12,18,21,30) >;
 
Copy content gap:G := Group( (1,9,29,23,6,8,26,21,3,12,28,19,2,10,30,24,5,7,25,22,4,11,27,20)(13,33,15,35,17,32)(14,34,16,36,18,31), (1,32,15,22,27,9,2,31,16,21,28,10)(3,34,18,23,26,11,4,33,17,24,25,12)(5,35,14,19,30,7,6,36,13,20,29,8), (1,33,5,31,3,36,2,34,6,32,4,35)(7,14,23,27,10,16,19,26,11,17,22,29,8,13,24,28,9,15,20,25,12,18,21,30) );
 
Copy content sage:G = PermutationGroup(['(1,9,29,23,6,8,26,21,3,12,28,19,2,10,30,24,5,7,25,22,4,11,27,20)(13,33,15,35,17,32)(14,34,16,36,18,31)', '(1,32,15,22,27,9,2,31,16,21,28,10)(3,34,18,23,26,11,4,33,17,24,25,12)(5,35,14,19,30,7,6,36,13,20,29,8)', '(1,33,5,31,3,36,2,34,6,32,4,35)(7,14,23,27,10,16,19,26,11,17,22,29,8,13,24,28,9,15,20,25,12,18,21,30)'])
 
Transitive group: 36T102574 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not computed
Possibly split product: $C_2^{14}$ . $(C_3^5.S_4\wr C_2)$ $C_2^{13}$ . $(C_3^4.S_4^2:D_6)$ $C_2^{12}$ . $(C_3^5.S_4^2:D_4)$ $C_2^{16}$ . $(C_3^5:D_6\wr C_2)$ all 51

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2}^{3} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{6}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 83 normal subgroups (61 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_2$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_2$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 3 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $6480 \times 6480$ character table is not available for this group.

Rational character table

The $3978 \times 3978$ rational character table is not available for this group.