Properties

Label 4478976.dt
Order \( 2^{11} \cdot 3^{7} \)
Exponent \( 2^{2} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \)
$\card{Z(G)}$ \( 2 \)
$\card{\Aut(G)}$ \( 2^{16} \cdot 3^{7} \)
$\card{\mathrm{Out}(G)}$ \( 2^{6} \)
Perm deg. not computed
Trans deg. $36$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,24,5,20)(2,23,6,19)(3,22,4,21)(7,36,11,34)(8,35,12,33)(9,32)(10,31)(13,26,17,28,15,29,14,25,18,27,16,30), (1,13,10,5,17,8,3,15,11,2,14,9,6,18,7,4,16,12)(19,32,29,21,34,28,24,35,26,20,31,30,22,33,27,23,36,25), (1,16,4,18)(2,15,3,17)(5,13,6,14)(19,26,20,25)(21,30,24,27)(22,29,23,28) >;
 
Copy content gap:G := Group( (1,24,5,20)(2,23,6,19)(3,22,4,21)(7,36,11,34)(8,35,12,33)(9,32)(10,31)(13,26,17,28,15,29,14,25,18,27,16,30), (1,13,10,5,17,8,3,15,11,2,14,9,6,18,7,4,16,12)(19,32,29,21,34,28,24,35,26,20,31,30,22,33,27,23,36,25), (1,16,4,18)(2,15,3,17)(5,13,6,14)(19,26,20,25)(21,30,24,27)(22,29,23,28) );
 
Copy content sage:G = PermutationGroup(['(1,24,5,20)(2,23,6,19)(3,22,4,21)(7,36,11,34)(8,35,12,33)(9,32)(10,31)(13,26,17,28,15,29,14,25,18,27,16,30)', '(1,13,10,5,17,8,3,15,11,2,14,9,6,18,7,4,16,12)(19,32,29,21,34,28,24,35,26,20,31,30,22,33,27,23,36,25)', '(1,16,4,18)(2,15,3,17)(5,13,6,14)(19,26,20,25)(21,30,24,27)(22,29,23,28)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(543360065635634258431433520260206547929421039042059543359654076457280656901358109166346234102399018034226280999412495381776548523329042213379419805794296358853845412233306987027247872061143798400017300572907390702351868148387735106828992573870860097833806194110921003057154530772081245831557760800559754715627264806076005575635971501771410839572400275992036193642459334426436824043312252584837907964919344888466286616616622606128493808111891228305637162577975939251632721691413178218443510392780947038487247544135869934498174101607019914731544895798333862247848869730788682279884697918288442976422442349716153170340950904562427581294297113959728273024717864228728034252717312489746016793661063366979122944521054947373135833310610592078373896349265988425701610310450648255582861086078637342774465231364127094000763260526035297086887926809571957918826005163,4478976)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.8; g = G.10; h = G.12; i = G.14; j = G.16; k = G.18;
 

Group information

Description:$C_3^6.(C_2^9.D_6)$
Order: \(4478976\)\(\medspace = 2^{11} \cdot 3^{7} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_3^6.C_2^6.A_4.C_2^6.C_2^2$, of order \(143327232\)\(\medspace = 2^{16} \cdot 3^{7} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 11, $C_3$ x 7
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 9 12 18
Elements 1 36319 42200 500256 789800 331776 1949184 829440 4478976
Conjugacy classes   1 67 14 44 642 5 142 9 924
Divisions 1 67 14 44 590 5 108 9 838
Autjugacy classes 1 32 14 13 267 3 33 4 367

Minimal presentations

Permutation degree:not computed
Transitive degree:$36$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 12 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k \mid c^{2}=e^{2}=f^{6}=g^{6}=h^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([18, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 27193536, 109977193, 91, 72394994, 35868134, 137745795, 37810389, 76046943, 143996404, 33949822, 36756490, 11239078, 256, 340832453, 232126583, 12599753, 32224235, 3794783, 114349542, 69803016, 18786642, 291372, 5373222, 2656428, 614416327, 86345593, 75555547, 6306109, 34063, 9889, 748051, 421, 17915912, 6718490, 6749612, 191870, 6734096, 2690, 1412, 144054729, 89549307, 37257885, 432063, 8738001, 10026819, 10917, 951615, 13653, 531, 295612426, 98537500, 73903150, 120466, 19108, 9622, 4888, 830427563, 154961453, 68916791, 9580097, 1710803, 6874085, 1197623, 99965, 641, 11321886, 853680, 539202, 9704532, 134886, 67512, 5790, 736392397, 49152127, 184122337, 4354627, 30590869, 13354087, 145273, 1360939, 45535, 38011, 751, 207374, 22498592, 25970, 3732548, 39191126, 622184, 311162, 39056, 1027776399, 324976353, 1410963, 29859909, 7547991, 7465065, 3732603, 1866381, 311217, 52053, 8889, 861, 456855586, 352564, 25380934, 176344, 6345322, 3172732, 1586446, 264562, 44278, 7594, 1493009, 373283, 80621621, 80621639, 2612825, 839987, 140183, 23579]); a,b,c,d,e,f,g,h,i,j,k := Explode([G.1, G.2, G.4, G.5, G.7, G.8, G.10, G.12, G.14, G.16, G.18]); AssignNames(~G, ["a", "b", "b2", "c", "d", "d2", "e", "f", "f2", "g", "g2", "h", "h2", "i", "i2", "j", "j2", "k"]);
 
Copy content gap:G := PcGroupCode(543360065635634258431433520260206547929421039042059543359654076457280656901358109166346234102399018034226280999412495381776548523329042213379419805794296358853845412233306987027247872061143798400017300572907390702351868148387735106828992573870860097833806194110921003057154530772081245831557760800559754715627264806076005575635971501771410839572400275992036193642459334426436824043312252584837907964919344888466286616616622606128493808111891228305637162577975939251632721691413178218443510392780947038487247544135869934498174101607019914731544895798333862247848869730788682279884697918288442976422442349716153170340950904562427581294297113959728273024717864228728034252717312489746016793661063366979122944521054947373135833310610592078373896349265988425701610310450648255582861086078637342774465231364127094000763260526035297086887926809571957918826005163,4478976); a := G.1; b := G.2; c := G.4; d := G.5; e := G.7; f := G.8; g := G.10; h := G.12; i := G.14; j := G.16; k := G.18;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(543360065635634258431433520260206547929421039042059543359654076457280656901358109166346234102399018034226280999412495381776548523329042213379419805794296358853845412233306987027247872061143798400017300572907390702351868148387735106828992573870860097833806194110921003057154530772081245831557760800559754715627264806076005575635971501771410839572400275992036193642459334426436824043312252584837907964919344888466286616616622606128493808111891228305637162577975939251632721691413178218443510392780947038487247544135869934498174101607019914731544895798333862247848869730788682279884697918288442976422442349716153170340950904562427581294297113959728273024717864228728034252717312489746016793661063366979122944521054947373135833310610592078373896349265988425701610310450648255582861086078637342774465231364127094000763260526035297086887926809571957918826005163,4478976)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.8; g = G.10; h = G.12; i = G.14; j = G.16; k = G.18;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(543360065635634258431433520260206547929421039042059543359654076457280656901358109166346234102399018034226280999412495381776548523329042213379419805794296358853845412233306987027247872061143798400017300572907390702351868148387735106828992573870860097833806194110921003057154530772081245831557760800559754715627264806076005575635971501771410839572400275992036193642459334426436824043312252584837907964919344888466286616616622606128493808111891228305637162577975939251632721691413178218443510392780947038487247544135869934498174101607019914731544895798333862247848869730788682279884697918288442976422442349716153170340950904562427581294297113959728273024717864228728034252717312489746016793661063366979122944521054947373135833310610592078373896349265988425701610310450648255582861086078637342774465231364127094000763260526035297086887926809571957918826005163,4478976)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.8; g = G.10; h = G.12; i = G.14; j = G.16; k = G.18;
 
Permutation group:Degree $36$ $\langle(1,24,5,20)(2,23,6,19)(3,22,4,21)(7,36,11,34)(8,35,12,33)(9,32)(10,31)(13,26,17,28,15,29,14,25,18,27,16,30) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,24,5,20)(2,23,6,19)(3,22,4,21)(7,36,11,34)(8,35,12,33)(9,32)(10,31)(13,26,17,28,15,29,14,25,18,27,16,30), (1,13,10,5,17,8,3,15,11,2,14,9,6,18,7,4,16,12)(19,32,29,21,34,28,24,35,26,20,31,30,22,33,27,23,36,25), (1,16,4,18)(2,15,3,17)(5,13,6,14)(19,26,20,25)(21,30,24,27)(22,29,23,28) >;
 
Copy content gap:G := Group( (1,24,5,20)(2,23,6,19)(3,22,4,21)(7,36,11,34)(8,35,12,33)(9,32)(10,31)(13,26,17,28,15,29,14,25,18,27,16,30), (1,13,10,5,17,8,3,15,11,2,14,9,6,18,7,4,16,12)(19,32,29,21,34,28,24,35,26,20,31,30,22,33,27,23,36,25), (1,16,4,18)(2,15,3,17)(5,13,6,14)(19,26,20,25)(21,30,24,27)(22,29,23,28) );
 
Copy content sage:G = PermutationGroup(['(1,24,5,20)(2,23,6,19)(3,22,4,21)(7,36,11,34)(8,35,12,33)(9,32)(10,31)(13,26,17,28,15,29,14,25,18,27,16,30)', '(1,13,10,5,17,8,3,15,11,2,14,9,6,18,7,4,16,12)(19,32,29,21,34,28,24,35,26,20,31,30,22,33,27,23,36,25)', '(1,16,4,18)(2,15,3,17)(5,13,6,14)(19,26,20,25)(21,30,24,27)(22,29,23,28)'])
 
Transitive group: 36T51413 more information
Direct product: $C_2$ $\, \times\, $ $(C_3^6.C_2^8:D_6)$
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_3^6$ . $(C_2^9.D_6)$ $(C_3^6.C_2^8:D_6)$ . $C_2$ $C_2$ . $(C_3^6.C_2^8:D_6)$ $(C_3^5:D_6)$ . $(C_2^6:S_4)$ all 29

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2}^{3} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{9}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 67 normal subgroups (29 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_2$ $G/Z \simeq$ $C_3^6.C_2^8:D_6$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_3^6.C_2^6.A_4$ $G/G' \simeq$ $C_2^3$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_2^2$ $G/\Phi \simeq$ $C_3^6.C_2^6:S_4$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_3\times C_6^5$ $G/\operatorname{Fit} \simeq$ $C_2^3:S_4$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_3^6.(C_2^9.D_6)$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_3^3\times C_6^3$ $G/\operatorname{soc} \simeq$ $C_2^5:S_4$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^5.D_4^2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^2\wr C_3$

Subgroup diagram and profile

Series

Derived series $C_3^6.(C_2^9.D_6)$ $\rhd$ $C_3^6.C_2^6.A_4$ $\rhd$ $C_3^6.C_2^6.C_2^2$ $\rhd$ $C_3^6$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_3^6.(C_2^9.D_6)$ $\rhd$ $C_3^6.C_2^6.A_4.C_2^2$ $\rhd$ $C_3^6.C_2^6.A_4.C_2$ $\rhd$ $C_3^6.C_2^6.A_4$ $\rhd$ $C_3^6.C_2^6.C_2^2$ $\rhd$ $C_3^6.C_2^6$ $\rhd$ $C_3^6.C_2^4$ $\rhd$ $C_3^5:D_6$ $\rhd$ $C_3^6$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_3^6.(C_2^9.D_6)$ $\rhd$ $C_3^6.C_2^6.A_4$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_2$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 5 larger groups in the database.

This group is a maximal quotient of 3 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $924 \times 924$ character table is not available for this group.

Rational character table

The $838 \times 838$ rational character table is not available for this group.