Properties

Label 419904.ir
Order \( 2^{6} \cdot 3^{8} \)
Exponent \( 2 \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{2} \cdot 3^{2} \)
$\card{Z(G)}$ 3
$\card{\Aut(G)}$ \( 2^{9} \cdot 3^{9} \)
$\card{\mathrm{Out}(G)}$ \( 2^{3} \cdot 3^{2} \)
Perm deg. $21$
Trans deg. $36$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 21 | (1,4)(10,12,11)(14,16)(15,17,19)(20,21), (1,3,6,2,5,8)(4,7,9)(13,15,18)(14,17,20,16,19,21), (1,2,4)(5,7)(6,9)(10,11,12)(13,14,16)(18,20,21) >;
 
Copy content gap:G := Group( (1,4)(10,12,11)(14,16)(15,17,19)(20,21), (1,3,6,2,5,8)(4,7,9)(13,15,18)(14,17,20,16,19,21), (1,2,4)(5,7)(6,9)(10,11,12)(13,14,16)(18,20,21) );
 
Copy content sage:G = PermutationGroup(['(1,4)(10,12,11)(14,16)(15,17,19)(20,21)', '(1,3,6,2,5,8)(4,7,9)(13,15,18)(14,17,20,16,19,21)', '(1,2,4)(5,7)(6,9)(10,11,12)(13,14,16)(18,20,21)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(11448378840313635874012839674343242329786026430774562542859122738352298502161210418199754883858908855565911226178252585476294990990511331287408431079141759423620288609350182382620742301205662995371241515170550800620670300507917956445171664939848275382588249123762405954724711126627491524120643323740393032980713535926359495135843084494466453891973922634492305220428878919598894257243870155951,419904)'); a = G.1; b = G.3; c = G.5; d = G.6; e = G.8; f = G.10; g = G.12; h = G.13; i = G.14;
 

Group information

Description:$C_3^4.D_6\wr C_3$
Order: \(419904\)\(\medspace = 2^{6} \cdot 3^{8} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_3^6.C_2^6:S_3^3$, of order \(10077696\)\(\medspace = 2^{9} \cdot 3^{9} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 6, $C_3$ x 8
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 6 9 18
Elements 1 4095 9962 250326 62208 93312 419904
Conjugacy classes   1 23 77 670 18 12 801
Divisions 1 23 50 436 9 6 525
Autjugacy classes 1 9 20 85 2 1 118

Minimal presentations

Permutation degree:$21$
Transitive degree:$36$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 12 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i \mid a^{6}=c^{2}=d^{6}=e^{6}=f^{6}=g^{3}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([14, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 3, 3, 3, 3, 28, 7737158, 2427658, 114, 10721763, 5210705, 1237869, 90724, 51678, 79412, 7606, 7620485, 16520131, 3111729, 780239, 901, 243, 2540166, 254036, 84706, 296400, 846, 10616263, 11041653, 7747523, 883393, 3437, 329, 5878664, 24494422, 4572324, 489938, 3102, 1380969, 1950503, 1738837, 94971, 4307, 415, 44362, 2794200, 931430, 3748, 3804, 919307, 3072409, 1020135, 76661, 193603, 12205, 70761612, 157274, 26248, 3302262, 235954, 6690, 43916557, 8241435, 2770697, 6453943, 903237, 635123, 70671, 23659]); a,b,c,d,e,f,g,h,i := Explode([G.1, G.3, G.5, G.6, G.8, G.10, G.12, G.13, G.14]); AssignNames(~G, ["a", "a2", "b", "b2", "c", "d", "d2", "e", "e2", "f", "f2", "g", "h", "i"]);
 
Copy content gap:G := PcGroupCode(11448378840313635874012839674343242329786026430774562542859122738352298502161210418199754883858908855565911226178252585476294990990511331287408431079141759423620288609350182382620742301205662995371241515170550800620670300507917956445171664939848275382588249123762405954724711126627491524120643323740393032980713535926359495135843084494466453891973922634492305220428878919598894257243870155951,419904); a := G.1; b := G.3; c := G.5; d := G.6; e := G.8; f := G.10; g := G.12; h := G.13; i := G.14;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(11448378840313635874012839674343242329786026430774562542859122738352298502161210418199754883858908855565911226178252585476294990990511331287408431079141759423620288609350182382620742301205662995371241515170550800620670300507917956445171664939848275382588249123762405954724711126627491524120643323740393032980713535926359495135843084494466453891973922634492305220428878919598894257243870155951,419904)'); a = G.1; b = G.3; c = G.5; d = G.6; e = G.8; f = G.10; g = G.12; h = G.13; i = G.14;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(11448378840313635874012839674343242329786026430774562542859122738352298502161210418199754883858908855565911226178252585476294990990511331287408431079141759423620288609350182382620742301205662995371241515170550800620670300507917956445171664939848275382588249123762405954724711126627491524120643323740393032980713535926359495135843084494466453891973922634492305220428878919598894257243870155951,419904)'); a = G.1; b = G.3; c = G.5; d = G.6; e = G.8; f = G.10; g = G.12; h = G.13; i = G.14;
 
Permutation group:Degree $21$ $\langle(1,4)(10,12,11)(14,16)(15,17,19)(20,21), (1,3,6,2,5,8)(4,7,9)(13,15,18)(14,17,20,16,19,21), (1,2,4)(5,7)(6,9)(10,11,12)(13,14,16)(18,20,21)\rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 21 | (1,4)(10,12,11)(14,16)(15,17,19)(20,21), (1,3,6,2,5,8)(4,7,9)(13,15,18)(14,17,20,16,19,21), (1,2,4)(5,7)(6,9)(10,11,12)(13,14,16)(18,20,21) >;
 
Copy content gap:G := Group( (1,4)(10,12,11)(14,16)(15,17,19)(20,21), (1,3,6,2,5,8)(4,7,9)(13,15,18)(14,17,20,16,19,21), (1,2,4)(5,7)(6,9)(10,11,12)(13,14,16)(18,20,21) );
 
Copy content sage:G = PermutationGroup(['(1,4)(10,12,11)(14,16)(15,17,19)(20,21)', '(1,3,6,2,5,8)(4,7,9)(13,15,18)(14,17,20,16,19,21)', '(1,2,4)(5,7)(6,9)(10,11,12)(13,14,16)(18,20,21)'])
 
Transitive group: 36T28865 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not computed
Possibly split product: $C_3^4$ . $(D_6\wr C_3)$ (2) $S_3^3$ . $(S_3^3:C_3^2)$ (2) $C_3^7$ . $(C_2^2\wr C_3)$ $(C_3^6.C_2^6)$ . $C_3^2$ all 41

Elements of the group are displayed as permutations of degree 21.

Homology

Abelianization: $C_{6}^{2} \simeq C_{2}^{2} \times C_{3}^{2}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 108 normal subgroups (17 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_3$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 9 larger groups in the database.

This group is a maximal quotient of 3 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $801 \times 801$ character table is not available for this group.

Rational character table

The $525 \times 525$ rational character table is not available for this group.