Group information
| Description: | $C_2^3.D_6\wr C_3$ | |
| Order: | \(41472\)\(\medspace = 2^{9} \cdot 3^{4} \) |
|
| Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
|
| Automorphism group: | $C_{794}:C_{198}$, of order \(3981312\)\(\medspace = 2^{14} \cdot 3^{5} \) |
|
| Composition factors: | $C_2$ x 9, $C_3$ x 4 |
|
| Derived length: | $3$ |
|
This group is nonabelian and solvable. Whether it is monomial has not been computed.
Group statistics
| Order | 1 | 2 | 3 | 4 | 6 | 9 | 12 | 18 | |
|---|---|---|---|---|---|---|---|---|---|
| Elements | 1 | 2271 | 1178 | 1824 | 15846 | 2304 | 11136 | 6912 | 41472 |
| Conjugacy classes | 1 | 51 | 5 | 10 | 124 | 2 | 25 | 6 | 224 |
| Divisions | 1 | 51 | 4 | 10 | 120 | 1 | 23 | 3 | 213 |
| Autjugacy classes | 1 | 16 | 4 | 6 | 30 | 1 | 9 | 2 | 69 |
Minimal presentations
| Permutation degree: | $21$ |
| Transitive degree: | $36$ |
| Rank: | $3$ |
| Inequivalent generating triples: | not computed |
Minimal degrees of faithful linear representations
| Over $\mathbb{C}$ | Over $\mathbb{R}$ | Over $\mathbb{Q}$ | |
|---|---|---|---|
| Irreducible | 12 | not computed | not computed |
| Arbitrary | not computed | not computed | not computed |
Constructions
| Presentation: |
${\langle a, b, c, d, e, f, g, h \mid b^{4}=c^{2}=d^{6}=e^{6}=f^{6}=g^{2}= \!\cdots\! \rangle}$
| |||||||
|
| ||||||||
| Permutation group: | Degree $21$
$\langle(1,2,4)(3,6,9,8,5,7)(10,11,13,16,17,20,21,12,15,14,18,19), (1,4,3,7,5,8,9,6,2) \!\cdots\! \rangle$
| |||||||
|
| ||||||||
| Transitive group: | 36T15400 | 36T15547 | more information | |||||
| Direct product: | not computed | |||||||
| Semidirect product: | not computed | |||||||
| Trans. wreath product: | not isomorphic to a non-trivial transitive wreath product | |||||||
| Possibly split product: | $C_2^4$ . $(S_3^3:A_4)$ | $(C_2^5\times S_3^3)$ . $C_6$ (3) | $C_2^5$ . $(S_3^3:C_6)$ | $(C_6^3.C_2^4)$ . $A_4$ (5) | all 41 | |||
Elements of the group are displayed as permutations of degree 21.
Homology
| Abelianization: | $C_{2} \times C_{6} \simeq C_{2}^{2} \times C_{3}$ |
|
| Schur multiplier: | $C_{2}^{6}$ |
|
| Commutator length: | $1$ |
|
Subgroups
There are 71 normal subgroups (41 characteristic).
Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.
Special subgroups
| Center: | a subgroup isomorphic to $C_2$ |
|
| Commutator: | not computed |
|
| Frattini: | a subgroup isomorphic to $C_2^3$ |
|
| Fitting: | not computed |
|
| Radical: | not computed |
|
| Socle: | not computed |
|
Subgroup diagram and profile
Series
| Derived series | not computed |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Chief series | not computed |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Lower central series | not computed |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Upper central series | not computed |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Supergroups
This group is a maximal subgroup of 8 larger groups in the database.
This group is a maximal quotient of 4 larger groups in the database.
Character theory
Complex character table
The $224 \times 224$ character table is not available for this group.
Rational character table
The $213 \times 213$ rational character table is not available for this group.