Properties

Label 41472.ek
Order \( 2^{9} \cdot 3^{4} \)
Exponent \( 2^{2} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{2} \cdot 3 \)
$\card{Z(G)}$ 2
$\card{\Aut(G)}$ \( 2^{14} \cdot 3^{5} \)
$\card{\mathrm{Out}(G)}$ \( 2^{6} \cdot 3 \)
Perm deg. $21$
Trans deg. $36$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 21 | (1,2,4)(3,6,9,8,5,7)(10,11,13,16,17,20,21,12,15,14,18,19), (1,4,3,7,5,8,9,6,2)(10,13,17,21,15,18)(11,14,19,12,16,20), (1,3,6,9,8,4,7,2,5)(10,12,15,16,18,19)(11,13,14,17,20,21) >;
 
Copy content gap:G := Group( (1,2,4)(3,6,9,8,5,7)(10,11,13,16,17,20,21,12,15,14,18,19), (1,4,3,7,5,8,9,6,2)(10,13,17,21,15,18)(11,14,19,12,16,20), (1,3,6,9,8,4,7,2,5)(10,12,15,16,18,19)(11,13,14,17,20,21) );
 
Copy content sage:G = PermutationGroup(['(1,2,4)(3,6,9,8,5,7)(10,11,13,16,17,20,21,12,15,14,18,19)', '(1,4,3,7,5,8,9,6,2)(10,13,17,21,15,18)(11,14,19,12,16,20)', '(1,3,6,9,8,4,7,2,5)(10,12,15,16,18,19)(11,13,14,17,20,21)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(6157289922830095000959854231065087160443798390420659932104930664538235564113507743247260085449586554325421297956081575373677513403382345842124124653271603280104050666007001725280069920611558001094939688650105318374732625147928035780692,41472)'); a = G.1; b = G.3; c = G.5; d = G.6; e = G.8; f = G.10; g = G.12; h = G.13;
 

Group information

Description:$C_2^3.D_6\wr C_3$
Order: \(41472\)\(\medspace = 2^{9} \cdot 3^{4} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_{794}:C_{198}$, of order \(3981312\)\(\medspace = 2^{14} \cdot 3^{5} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 9, $C_3$ x 4
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 9 12 18
Elements 1 2271 1178 1824 15846 2304 11136 6912 41472
Conjugacy classes   1 51 5 10 124 2 25 6 224
Divisions 1 51 4 10 120 1 23 3 213
Autjugacy classes 1 16 4 6 30 1 9 2 69

Minimal presentations

Permutation degree:$21$
Transitive degree:$36$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 12 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h \mid b^{4}=c^{2}=d^{6}=e^{6}=f^{6}=g^{2}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([13, 2, 3, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 2, 26, 54926, 1421552, 405888, 106, 1932531, 561928, 2363404, 631817, 168770, 1185917, 1204650, 202831, 837, 226, 681414, 26227, 786, 2806759, 464276, 379425, 6299, 3192, 306, 11240, 438069, 5676, 2881, 887649, 1261282, 780035, 15661, 23474, 386, 178474, 549143, 192228, 24086, 20667, 4045403, 1618368, 696421, 1754232, 949129, 24374]); a,b,c,d,e,f,g,h := Explode([G.1, G.3, G.5, G.6, G.8, G.10, G.12, G.13]); AssignNames(~G, ["a", "a2", "b", "b2", "c", "d", "d2", "e", "e2", "f", "f2", "g", "h"]);
 
Copy content gap:G := PcGroupCode(6157289922830095000959854231065087160443798390420659932104930664538235564113507743247260085449586554325421297956081575373677513403382345842124124653271603280104050666007001725280069920611558001094939688650105318374732625147928035780692,41472); a := G.1; b := G.3; c := G.5; d := G.6; e := G.8; f := G.10; g := G.12; h := G.13;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(6157289922830095000959854231065087160443798390420659932104930664538235564113507743247260085449586554325421297956081575373677513403382345842124124653271603280104050666007001725280069920611558001094939688650105318374732625147928035780692,41472)'); a = G.1; b = G.3; c = G.5; d = G.6; e = G.8; f = G.10; g = G.12; h = G.13;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(6157289922830095000959854231065087160443798390420659932104930664538235564113507743247260085449586554325421297956081575373677513403382345842124124653271603280104050666007001725280069920611558001094939688650105318374732625147928035780692,41472)'); a = G.1; b = G.3; c = G.5; d = G.6; e = G.8; f = G.10; g = G.12; h = G.13;
 
Permutation group:Degree $21$ $\langle(1,2,4)(3,6,9,8,5,7)(10,11,13,16,17,20,21,12,15,14,18,19), (1,4,3,7,5,8,9,6,2) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 21 | (1,2,4)(3,6,9,8,5,7)(10,11,13,16,17,20,21,12,15,14,18,19), (1,4,3,7,5,8,9,6,2)(10,13,17,21,15,18)(11,14,19,12,16,20), (1,3,6,9,8,4,7,2,5)(10,12,15,16,18,19)(11,13,14,17,20,21) >;
 
Copy content gap:G := Group( (1,2,4)(3,6,9,8,5,7)(10,11,13,16,17,20,21,12,15,14,18,19), (1,4,3,7,5,8,9,6,2)(10,13,17,21,15,18)(11,14,19,12,16,20), (1,3,6,9,8,4,7,2,5)(10,12,15,16,18,19)(11,13,14,17,20,21) );
 
Copy content sage:G = PermutationGroup(['(1,2,4)(3,6,9,8,5,7)(10,11,13,16,17,20,21,12,15,14,18,19)', '(1,4,3,7,5,8,9,6,2)(10,13,17,21,15,18)(11,14,19,12,16,20)', '(1,3,6,9,8,4,7,2,5)(10,12,15,16,18,19)(11,13,14,17,20,21)'])
 
Transitive group: 36T15400 36T15547 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_2^4$ . $(S_3^3:A_4)$ $(C_2^5\times S_3^3)$ . $C_6$ (3) $C_2^5$ . $(S_3^3:C_6)$ $(C_6^3.C_2^4)$ . $A_4$ (5) all 41

Elements of the group are displayed as permutations of degree 21.

Homology

Abelianization: $C_{2} \times C_{6} \simeq C_{2}^{2} \times C_{3}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{6}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 71 normal subgroups (41 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_2$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_2^3$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 8 larger groups in the database.

This group is a maximal quotient of 4 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $224 \times 224$ character table is not available for this group.

Rational character table

The $213 \times 213$ rational character table is not available for this group.