| Presentation: |
${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n \mid d^{6}=e^{6}=f^{6}= \!\cdots\! \rangle}$
|
magma:G := PCGroup([21, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 42, 3661348342, 20950357934, 9475851317, 170, 31319206467, 12271410840, 1205614434, 2800182004, 11798764765, 9345198916, 2008554412, 298, 15604011365, 5715780362, 3644942159, 1773003020, 944831522, 59532946710, 7656349203, 1337399580, 717851931, 1837108188, 372357579, 426, 38379737095, 9677622556, 1167905137, 2158126054, 1203602491, 215551840, 54611247608, 20964933893, 17667620258, 922969475, 2030251322, 1424660756, 327899636, 247312514, 554, 35532122649, 32626933950, 5852649651, 91491192, 3365006493, 608829594, 38979122962, 42203566975, 5310655864, 2960379649, 2952310378, 681300889, 163367956, 29393059, 96799804, 233740, 682, 29958215627, 33657773216, 3041224757, 2944574735, 834243092, 109426601, 47449763, 17424218460, 6962961129, 7050027402, 1841570715, 324096414, 1466712000, 115754322, 117670803, 118614312, 2105052, 810, 115649420557, 12775015042, 8312461975, 3836149708, 1365597169, 2419504282, 64393237, 5920207, 36314308814, 40504030595, 4320834896, 2118765677, 3270822758, 1242278219, 8164940, 136919342, 3179204, 38066, 92344541199, 188117028, 94058553, 911844963, 445471608, 288272013, 48045495, 4124961, 687723, 70848654928, 35744290885, 3414545122, 2268018223, 2613175840, 1838200261, 154327000, 3500254, 42222469985, 66384396326, 11859263195, 320386832, 1515087605, 2817459410, 181258703, 30209945, 9285419, 1587869, 41738569674, 72591749031, 12195438252, 5792599089, 346833246, 317621679, 251312688, 27234330, 4644588, 1223604, 162803941459, 34976188840, 12796993501, 5052378322, 742694503, 911935204, 88179985, 40189147, 1718869, 1436671, 71415328340, 71231801801, 18188593478, 13164760307, 7090481012, 22866857, 797864402, 114212132, 13807058, 2844722]); a,b,c,d,e,f,g,h,i,j,k,l,m,n := Explode([G.1, G.3, G.5, G.7, G.9, G.11, G.13, G.15, G.16, G.17, G.18, G.19, G.20, G.21]); AssignNames(~G, ["a", "a2", "b", "b2", "c", "c2", "d", "d2", "e", "e2", "f", "f2", "g", "g2", "h", "i", "j", "k", "l", "m", "n"]);
gap:G := PcGroupCode(425930512616721848252415860461246650862599220963468640189110501950025527088028201229768605139670684723381563689358220979887847362817964535292185656565362456046611666161048993657365451908666692465809692947979085932836971387604636731832964082518505788949336342131509367979924345631793627856228879454340257305755010140533532604757524904508709386276812220248565254209911234502452642483121694524604209279743819632945648698725609735672754643942013956971858827704508512335890014222963613372982446697129531308471344118723431012944492626891420899170542973981079356315207157267068169697557493020263081205126420342713320172646280265193852296079883429994346759078967139360434167352901721757835243041491305062640526132642234146319829633806221321666265365098421805266439367879275638491851421790597084520862421898320567015027720304924042111826662152287033803977702126393617479875940418915484903922461954757445314412646626443875338567634737864584611034069761501551311292172314043178102741980212776852332920962115033316691640425145868407938874809679439141425268590416267377363118473232197235469922625770497656027503276928056237863115226063598348794029436058188237753777240736220364860787241855007397321380194918953148619168322495878962370200762058095779616725591495784248697700587653249662011298352731660810028316731721884711093388085816135672012567253608095669731375056800623359,408146688); a := G.1; b := G.3; c := G.5; d := G.7; e := G.9; f := G.11; g := G.13; h := G.15; i := G.16; j := G.17; k := G.18; l := G.19; m := G.20; n := G.21;
sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(425930512616721848252415860461246650862599220963468640189110501950025527088028201229768605139670684723381563689358220979887847362817964535292185656565362456046611666161048993657365451908666692465809692947979085932836971387604636731832964082518505788949336342131509367979924345631793627856228879454340257305755010140533532604757524904508709386276812220248565254209911234502452642483121694524604209279743819632945648698725609735672754643942013956971858827704508512335890014222963613372982446697129531308471344118723431012944492626891420899170542973981079356315207157267068169697557493020263081205126420342713320172646280265193852296079883429994346759078967139360434167352901721757835243041491305062640526132642234146319829633806221321666265365098421805266439367879275638491851421790597084520862421898320567015027720304924042111826662152287033803977702126393617479875940418915484903922461954757445314412646626443875338567634737864584611034069761501551311292172314043178102741980212776852332920962115033316691640425145868407938874809679439141425268590416267377363118473232197235469922625770497656027503276928056237863115226063598348794029436058188237753777240736220364860787241855007397321380194918953148619168322495878962370200762058095779616725591495784248697700587653249662011298352731660810028316731721884711093388085816135672012567253608095669731375056800623359,408146688)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.11; g = G.13; h = G.15; i = G.16; j = G.17; k = G.18; l = G.19; m = G.20; n = G.21;
sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(425930512616721848252415860461246650862599220963468640189110501950025527088028201229768605139670684723381563689358220979887847362817964535292185656565362456046611666161048993657365451908666692465809692947979085932836971387604636731832964082518505788949336342131509367979924345631793627856228879454340257305755010140533532604757524904508709386276812220248565254209911234502452642483121694524604209279743819632945648698725609735672754643942013956971858827704508512335890014222963613372982446697129531308471344118723431012944492626891420899170542973981079356315207157267068169697557493020263081205126420342713320172646280265193852296079883429994346759078967139360434167352901721757835243041491305062640526132642234146319829633806221321666265365098421805266439367879275638491851421790597084520862421898320567015027720304924042111826662152287033803977702126393617479875940418915484903922461954757445314412646626443875338567634737864584611034069761501551311292172314043178102741980212776852332920962115033316691640425145868407938874809679439141425268590416267377363118473232197235469922625770497656027503276928056237863115226063598348794029436058188237753777240736220364860787241855007397321380194918953148619168322495878962370200762058095779616725591495784248697700587653249662011298352731660810028316731721884711093388085816135672012567253608095669731375056800623359,408146688)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.11; g = G.13; h = G.15; i = G.16; j = G.17; k = G.18; l = G.19; m = G.20; n = G.21;
|
| Permutation group: | Degree $36$
$\langle(1,28,25,19,14,7,3,30,26,21,13,9)(2,29,27,20,15,8)(4,34,33,22,18,12)(5,35,31,24,17,11,6,36,32,23,16,10) \!\cdots\! \rangle$
|
magma:G := PermutationGroup< 36 | (1,28,25,19,14,7,3,30,26,21,13,9)(2,29,27,20,15,8)(4,34,33,22,18,12)(5,35,31,24,17,11,6,36,32,23,16,10), (1,11,3,12,2,10)(13,35)(14,36)(15,34)(16,32,20,30,18,31,21,29,17,33,19,28)(22,25,23,26,24,27), (1,12,26,35,15,23,2,11,27,36,13,24,3,10,25,34,14,22)(4,19,29,8,18,33,6,21,30,9,16,31,5,20,28,7,17,32) >;
gap:G := Group( (1,28,25,19,14,7,3,30,26,21,13,9)(2,29,27,20,15,8)(4,34,33,22,18,12)(5,35,31,24,17,11,6,36,32,23,16,10), (1,11,3,12,2,10)(13,35)(14,36)(15,34)(16,32,20,30,18,31,21,29,17,33,19,28)(22,25,23,26,24,27), (1,12,26,35,15,23,2,11,27,36,13,24,3,10,25,34,14,22)(4,19,29,8,18,33,6,21,30,9,16,31,5,20,28,7,17,32) );
sage:G = PermutationGroup(['(1,28,25,19,14,7,3,30,26,21,13,9)(2,29,27,20,15,8)(4,34,33,22,18,12)(5,35,31,24,17,11,6,36,32,23,16,10)', '(1,11,3,12,2,10)(13,35)(14,36)(15,34)(16,32,20,30,18,31,21,29,17,33,19,28)(22,25,23,26,24,27)', '(1,12,26,35,15,23,2,11,27,36,13,24,3,10,25,34,14,22)(4,19,29,8,18,33,6,21,30,9,16,31,5,20,28,7,17,32)'])
|
| Transitive group: |
36T87488 |
|
|
|
more information |
| Direct product: |
not computed |
| Semidirect product: |
not computed |
| Trans. wreath product: |
not computed |
| Possibly split product: |
$(C_3^{12}.C_2^6)$ . $D_6$ (3) |
$C_3^{12}$ . $(C_2^6.D_6)$ |
$(C_3^{12}.C_2^6.C_2)$ . $S_3$ |
$(C_3^{12}.C_2.C_2^4)$ . $S_4$ |
all 51 |
Elements of the group are displayed as permutations of degree 36.
The character tables for this group have not been computed.