Properties

Label 408146688.zw
Order \( 2^{8} \cdot 3^{13} \)
Exponent \( 2^{2} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{4} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{12} \cdot 3^{15} \)
$\card{\mathrm{Out}(G)}$ \( 2^{4} \cdot 3^{2} \)
Perm deg. not computed
Trans deg. $36$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,28,25,19,14,7,3,30,26,21,13,9)(2,29,27,20,15,8)(4,34,33,22,18,12)(5,35,31,24,17,11,6,36,32,23,16,10), (1,11,3,12,2,10)(13,35)(14,36)(15,34)(16,32,20,30,18,31,21,29,17,33,19,28)(22,25,23,26,24,27), (1,12,26,35,15,23,2,11,27,36,13,24,3,10,25,34,14,22)(4,19,29,8,18,33,6,21,30,9,16,31,5,20,28,7,17,32) >;
 
Copy content gap:G := Group( (1,28,25,19,14,7,3,30,26,21,13,9)(2,29,27,20,15,8)(4,34,33,22,18,12)(5,35,31,24,17,11,6,36,32,23,16,10), (1,11,3,12,2,10)(13,35)(14,36)(15,34)(16,32,20,30,18,31,21,29,17,33,19,28)(22,25,23,26,24,27), (1,12,26,35,15,23,2,11,27,36,13,24,3,10,25,34,14,22)(4,19,29,8,18,33,6,21,30,9,16,31,5,20,28,7,17,32) );
 
Copy content sage:G = PermutationGroup(['(1,28,25,19,14,7,3,30,26,21,13,9)(2,29,27,20,15,8)(4,34,33,22,18,12)(5,35,31,24,17,11,6,36,32,23,16,10)', '(1,11,3,12,2,10)(13,35)(14,36)(15,34)(16,32,20,30,18,31,21,29,17,33,19,28)(22,25,23,26,24,27)', '(1,12,26,35,15,23,2,11,27,36,13,24,3,10,25,34,14,22)(4,19,29,8,18,33,6,21,30,9,16,31,5,20,28,7,17,32)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(425930512616721848252415860461246650862599220963468640189110501950025527088028201229768605139670684723381563689358220979887847362817964535292185656565362456046611666161048993657365451908666692465809692947979085932836971387604636731832964082518505788949336342131509367979924345631793627856228879454340257305755010140533532604757524904508709386276812220248565254209911234502452642483121694524604209279743819632945648698725609735672754643942013956971858827704508512335890014222963613372982446697129531308471344118723431012944492626891420899170542973981079356315207157267068169697557493020263081205126420342713320172646280265193852296079883429994346759078967139360434167352901721757835243041491305062640526132642234146319829633806221321666265365098421805266439367879275638491851421790597084520862421898320567015027720304924042111826662152287033803977702126393617479875940418915484903922461954757445314412646626443875338567634737864584611034069761501551311292172314043178102741980212776852332920962115033316691640425145868407938874809679439141425268590416267377363118473232197235469922625770497656027503276928056237863115226063598348794029436058188237753777240736220364860787241855007397321380194918953148619168322495878962370200762058095779616725591495784248697700587653249662011298352731660810028316731721884711093388085816135672012567253608095669731375056800623359,408146688)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.11; g = G.13; h = G.15; i = G.16; j = G.17; k = G.18; l = G.19; m = G.20; n = G.21;
 

Group information

Description:$C_3^8.(C_6^4.(C_4\times D_6))$
Order: \(408146688\)\(\medspace = 2^{8} \cdot 3^{13} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(58773123072\)\(\medspace = 2^{12} \cdot 3^{15} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 8, $C_3$ x 13
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial or rational has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Statistics about orders of elements in this group have not been computed.

Minimal presentations

Permutation degree:not computed
Transitive degree:$36$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n \mid d^{6}=e^{6}=f^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([21, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 42, 3661348342, 20950357934, 9475851317, 170, 31319206467, 12271410840, 1205614434, 2800182004, 11798764765, 9345198916, 2008554412, 298, 15604011365, 5715780362, 3644942159, 1773003020, 944831522, 59532946710, 7656349203, 1337399580, 717851931, 1837108188, 372357579, 426, 38379737095, 9677622556, 1167905137, 2158126054, 1203602491, 215551840, 54611247608, 20964933893, 17667620258, 922969475, 2030251322, 1424660756, 327899636, 247312514, 554, 35532122649, 32626933950, 5852649651, 91491192, 3365006493, 608829594, 38979122962, 42203566975, 5310655864, 2960379649, 2952310378, 681300889, 163367956, 29393059, 96799804, 233740, 682, 29958215627, 33657773216, 3041224757, 2944574735, 834243092, 109426601, 47449763, 17424218460, 6962961129, 7050027402, 1841570715, 324096414, 1466712000, 115754322, 117670803, 118614312, 2105052, 810, 115649420557, 12775015042, 8312461975, 3836149708, 1365597169, 2419504282, 64393237, 5920207, 36314308814, 40504030595, 4320834896, 2118765677, 3270822758, 1242278219, 8164940, 136919342, 3179204, 38066, 92344541199, 188117028, 94058553, 911844963, 445471608, 288272013, 48045495, 4124961, 687723, 70848654928, 35744290885, 3414545122, 2268018223, 2613175840, 1838200261, 154327000, 3500254, 42222469985, 66384396326, 11859263195, 320386832, 1515087605, 2817459410, 181258703, 30209945, 9285419, 1587869, 41738569674, 72591749031, 12195438252, 5792599089, 346833246, 317621679, 251312688, 27234330, 4644588, 1223604, 162803941459, 34976188840, 12796993501, 5052378322, 742694503, 911935204, 88179985, 40189147, 1718869, 1436671, 71415328340, 71231801801, 18188593478, 13164760307, 7090481012, 22866857, 797864402, 114212132, 13807058, 2844722]); a,b,c,d,e,f,g,h,i,j,k,l,m,n := Explode([G.1, G.3, G.5, G.7, G.9, G.11, G.13, G.15, G.16, G.17, G.18, G.19, G.20, G.21]); AssignNames(~G, ["a", "a2", "b", "b2", "c", "c2", "d", "d2", "e", "e2", "f", "f2", "g", "g2", "h", "i", "j", "k", "l", "m", "n"]);
 
Copy content gap:G := PcGroupCode(425930512616721848252415860461246650862599220963468640189110501950025527088028201229768605139670684723381563689358220979887847362817964535292185656565362456046611666161048993657365451908666692465809692947979085932836971387604636731832964082518505788949336342131509367979924345631793627856228879454340257305755010140533532604757524904508709386276812220248565254209911234502452642483121694524604209279743819632945648698725609735672754643942013956971858827704508512335890014222963613372982446697129531308471344118723431012944492626891420899170542973981079356315207157267068169697557493020263081205126420342713320172646280265193852296079883429994346759078967139360434167352901721757835243041491305062640526132642234146319829633806221321666265365098421805266439367879275638491851421790597084520862421898320567015027720304924042111826662152287033803977702126393617479875940418915484903922461954757445314412646626443875338567634737864584611034069761501551311292172314043178102741980212776852332920962115033316691640425145868407938874809679439141425268590416267377363118473232197235469922625770497656027503276928056237863115226063598348794029436058188237753777240736220364860787241855007397321380194918953148619168322495878962370200762058095779616725591495784248697700587653249662011298352731660810028316731721884711093388085816135672012567253608095669731375056800623359,408146688); a := G.1; b := G.3; c := G.5; d := G.7; e := G.9; f := G.11; g := G.13; h := G.15; i := G.16; j := G.17; k := G.18; l := G.19; m := G.20; n := G.21;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(425930512616721848252415860461246650862599220963468640189110501950025527088028201229768605139670684723381563689358220979887847362817964535292185656565362456046611666161048993657365451908666692465809692947979085932836971387604636731832964082518505788949336342131509367979924345631793627856228879454340257305755010140533532604757524904508709386276812220248565254209911234502452642483121694524604209279743819632945648698725609735672754643942013956971858827704508512335890014222963613372982446697129531308471344118723431012944492626891420899170542973981079356315207157267068169697557493020263081205126420342713320172646280265193852296079883429994346759078967139360434167352901721757835243041491305062640526132642234146319829633806221321666265365098421805266439367879275638491851421790597084520862421898320567015027720304924042111826662152287033803977702126393617479875940418915484903922461954757445314412646626443875338567634737864584611034069761501551311292172314043178102741980212776852332920962115033316691640425145868407938874809679439141425268590416267377363118473232197235469922625770497656027503276928056237863115226063598348794029436058188237753777240736220364860787241855007397321380194918953148619168322495878962370200762058095779616725591495784248697700587653249662011298352731660810028316731721884711093388085816135672012567253608095669731375056800623359,408146688)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.11; g = G.13; h = G.15; i = G.16; j = G.17; k = G.18; l = G.19; m = G.20; n = G.21;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(425930512616721848252415860461246650862599220963468640189110501950025527088028201229768605139670684723381563689358220979887847362817964535292185656565362456046611666161048993657365451908666692465809692947979085932836971387604636731832964082518505788949336342131509367979924345631793627856228879454340257305755010140533532604757524904508709386276812220248565254209911234502452642483121694524604209279743819632945648698725609735672754643942013956971858827704508512335890014222963613372982446697129531308471344118723431012944492626891420899170542973981079356315207157267068169697557493020263081205126420342713320172646280265193852296079883429994346759078967139360434167352901721757835243041491305062640526132642234146319829633806221321666265365098421805266439367879275638491851421790597084520862421898320567015027720304924042111826662152287033803977702126393617479875940418915484903922461954757445314412646626443875338567634737864584611034069761501551311292172314043178102741980212776852332920962115033316691640425145868407938874809679439141425268590416267377363118473232197235469922625770497656027503276928056237863115226063598348794029436058188237753777240736220364860787241855007397321380194918953148619168322495878962370200762058095779616725591495784248697700587653249662011298352731660810028316731721884711093388085816135672012567253608095669731375056800623359,408146688)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.11; g = G.13; h = G.15; i = G.16; j = G.17; k = G.18; l = G.19; m = G.20; n = G.21;
 
Permutation group:Degree $36$ $\langle(1,28,25,19,14,7,3,30,26,21,13,9)(2,29,27,20,15,8)(4,34,33,22,18,12)(5,35,31,24,17,11,6,36,32,23,16,10) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,28,25,19,14,7,3,30,26,21,13,9)(2,29,27,20,15,8)(4,34,33,22,18,12)(5,35,31,24,17,11,6,36,32,23,16,10), (1,11,3,12,2,10)(13,35)(14,36)(15,34)(16,32,20,30,18,31,21,29,17,33,19,28)(22,25,23,26,24,27), (1,12,26,35,15,23,2,11,27,36,13,24,3,10,25,34,14,22)(4,19,29,8,18,33,6,21,30,9,16,31,5,20,28,7,17,32) >;
 
Copy content gap:G := Group( (1,28,25,19,14,7,3,30,26,21,13,9)(2,29,27,20,15,8)(4,34,33,22,18,12)(5,35,31,24,17,11,6,36,32,23,16,10), (1,11,3,12,2,10)(13,35)(14,36)(15,34)(16,32,20,30,18,31,21,29,17,33,19,28)(22,25,23,26,24,27), (1,12,26,35,15,23,2,11,27,36,13,24,3,10,25,34,14,22)(4,19,29,8,18,33,6,21,30,9,16,31,5,20,28,7,17,32) );
 
Copy content sage:G = PermutationGroup(['(1,28,25,19,14,7,3,30,26,21,13,9)(2,29,27,20,15,8)(4,34,33,22,18,12)(5,35,31,24,17,11,6,36,32,23,16,10)', '(1,11,3,12,2,10)(13,35)(14,36)(15,34)(16,32,20,30,18,31,21,29,17,33,19,28)(22,25,23,26,24,27)', '(1,12,26,35,15,23,2,11,27,36,13,24,3,10,25,34,14,22)(4,19,29,8,18,33,6,21,30,9,16,31,5,20,28,7,17,32)'])
 
Transitive group: 36T87488 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not computed
Possibly split product: $(C_3^{12}.C_2^6)$ . $D_6$ (3) $C_3^{12}$ . $(C_2^6.D_6)$ $(C_3^{12}.C_2^6.C_2)$ . $S_3$ $(C_3^{12}.C_2.C_2^4)$ . $S_4$ all 51

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2}^{2} \times C_{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 76 normal subgroups (64 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_3^4$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 6 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

The character tables for this group have not been computed.