Properties

Label 408146688.wh
Order \( 2^{8} \cdot 3^{13} \)
Exponent \( 2^{2} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{11} \cdot 3^{16} \)
$\card{\mathrm{Out}(G)}$ \( 2^{3} \cdot 3^{3} \)
Perm deg. not computed
Trans deg. $36$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,8)(2,9,3,7)(4,34,5,35)(6,36)(10,29,15,32,11,28,14,31,12,30,13,33)(16,25,20,22,18,26,19,24,17,27,21,23), (1,4)(2,6,3,5)(7,36,8,35)(9,34)(10,28,13,33,11,30,15,32,12,29,14,31)(16,25,20,24,17,27,21,22,18,26,19,23), (1,10,26,35,13,24)(2,12,27,34,14,23)(3,11,25,36,15,22)(4,20,30,9,18,31,6,19,29,7,16,32,5,21,28,8,17,33) >;
 
Copy content gap:G := Group( (1,8)(2,9,3,7)(4,34,5,35)(6,36)(10,29,15,32,11,28,14,31,12,30,13,33)(16,25,20,22,18,26,19,24,17,27,21,23), (1,4)(2,6,3,5)(7,36,8,35)(9,34)(10,28,13,33,11,30,15,32,12,29,14,31)(16,25,20,24,17,27,21,22,18,26,19,23), (1,10,26,35,13,24)(2,12,27,34,14,23)(3,11,25,36,15,22)(4,20,30,9,18,31,6,19,29,7,16,32,5,21,28,8,17,33) );
 
Copy content sage:G = PermutationGroup(['(1,8)(2,9,3,7)(4,34,5,35)(6,36)(10,29,15,32,11,28,14,31,12,30,13,33)(16,25,20,22,18,26,19,24,17,27,21,23)', '(1,4)(2,6,3,5)(7,36,8,35)(9,34)(10,28,13,33,11,30,15,32,12,29,14,31)(16,25,20,24,17,27,21,22,18,26,19,23)', '(1,10,26,35,13,24)(2,12,27,34,14,23)(3,11,25,36,15,22)(4,20,30,9,18,31,6,19,29,7,16,32,5,21,28,8,17,33)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(813885850494806829814241379846820078413855168152761869600568991324511680628592538706547333606422940642095520799703060179166416504594886289641973815219004540549084135255345506729165936218679616980703258879765855685541767559411759127107527080429906104013513983637387249374675478670795457101045767991242481586419679327847390370400451063622932299910088598653291465877969491312530885547885914570864762210153282482772613704782296892836241407267259708088714849345120255579397926062048000827166036158802932321612239711601929816157688370689170192723739916360542277447504428099520392544111352176935241157484220897419207748536372032392037955225540906325972895106347557165189448475584114985861999538079790249051876754012315267388099770518808454849597137492221688380877960955364810106285964101815652289789417098698027062234605956928774192712715713467174469776627560822586797145232593479775831666966186399930890836082626751447147798189998450572382748801481850727040086505612245864633557441508984056259189208153189153027768877873426262045156798100163261089735164265744536428502044658466585308075759031290861125845391081583944018865390962204839396100630676431777912191,408146688)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.10; g = G.12; h = G.14; i = G.16; j = G.17; k = G.18; l = G.19; m = G.20; n = G.21;
 

Group information

Description:$C_3^8.((C_3\times C_6^3).\GL(2,\mathbb{Z}/4))$
Order: \(408146688\)\(\medspace = 2^{8} \cdot 3^{13} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(88159684608\)\(\medspace = 2^{11} \cdot 3^{16} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 8, $C_3$ x 13
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 9 12 18
Elements 1 1662255 741392 34957008 119683440 16796160 143607168 90699264 408146688
Conjugacy classes   1 33 2187 14 11945 16 180 18 14394
Divisions 1 33 2187 14 11943 10 180 10 14378

Minimal presentations

Permutation degree:not computed
Transitive degree:$36$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n \mid c^{6}=d^{6}=e^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([21, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 4776401322, 4373282761, 106, 16335878330, 2939372, 8448654819, 9635774424, 2168053569, 234, 14409891724, 16912576825, 6066772786, 20718996485, 2199339350, 3357071345, 1951714616, 362, 3490179846, 15335963775, 8120649018, 2955986025, 62456793847, 16769698876, 5964650545, 378997990, 2122887403, 858284896, 379500541, 490, 35873518472, 21781021529, 16305026270, 2292689519, 737773709, 37692398529, 9894675450, 5556567921, 4222879992, 264547194, 266176395, 13886616, 34973367, 618, 27159590314, 43161636703, 13646156884, 874793419, 161968117, 21682031627, 676399280, 15246144701, 5526263306, 3021792575, 491902100, 500692889, 111413390, 41971787, 23625200, 8138561, 746, 66847592460, 38746929345, 17059914198, 1261679403, 31960773, 147223599, 34204917, 68450552365, 43304139682, 28853423479, 7615145740, 2490753985, 1317200086, 200228251, 37277008, 93954349, 17156866, 7689499, 5177584, 117571, 874, 117398990534, 272321, 52296523812, 564351033, 6725182542, 252129186, 31135308, 4320, 18788184613, 18238530298, 4230672847, 705112249, 38941765, 6490507, 13141, 61373168657, 25819057190, 36241914299, 8641624400, 728953466, 40252670, 6708992, 41114, 120853410066, 19434836775, 36356548092, 843913851, 7771173, 129567, 102523760659, 59609571880, 31450809661, 12952638802, 1855042684, 36923248, 8951290, 408532, 73330354964, 27035938985, 16233908606, 13867749587, 1673457533, 54296087, 64202753, 1286249]); a,b,c,d,e,f,g,h,i,j,k,l,m,n := Explode([G.1, G.2, G.4, G.6, G.8, G.10, G.12, G.14, G.16, G.17, G.18, G.19, G.20, G.21]); AssignNames(~G, ["a", "b", "b2", "c", "c2", "d", "d2", "e", "e2", "f", "f2", "g", "g2", "h", "h2", "i", "j", "k", "l", "m", "n"]);
 
Copy content gap:G := PcGroupCode(813885850494806829814241379846820078413855168152761869600568991324511680628592538706547333606422940642095520799703060179166416504594886289641973815219004540549084135255345506729165936218679616980703258879765855685541767559411759127107527080429906104013513983637387249374675478670795457101045767991242481586419679327847390370400451063622932299910088598653291465877969491312530885547885914570864762210153282482772613704782296892836241407267259708088714849345120255579397926062048000827166036158802932321612239711601929816157688370689170192723739916360542277447504428099520392544111352176935241157484220897419207748536372032392037955225540906325972895106347557165189448475584114985861999538079790249051876754012315267388099770518808454849597137492221688380877960955364810106285964101815652289789417098698027062234605956928774192712715713467174469776627560822586797145232593479775831666966186399930890836082626751447147798189998450572382748801481850727040086505612245864633557441508984056259189208153189153027768877873426262045156798100163261089735164265744536428502044658466585308075759031290861125845391081583944018865390962204839396100630676431777912191,408146688); a := G.1; b := G.2; c := G.4; d := G.6; e := G.8; f := G.10; g := G.12; h := G.14; i := G.16; j := G.17; k := G.18; l := G.19; m := G.20; n := G.21;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(813885850494806829814241379846820078413855168152761869600568991324511680628592538706547333606422940642095520799703060179166416504594886289641973815219004540549084135255345506729165936218679616980703258879765855685541767559411759127107527080429906104013513983637387249374675478670795457101045767991242481586419679327847390370400451063622932299910088598653291465877969491312530885547885914570864762210153282482772613704782296892836241407267259708088714849345120255579397926062048000827166036158802932321612239711601929816157688370689170192723739916360542277447504428099520392544111352176935241157484220897419207748536372032392037955225540906325972895106347557165189448475584114985861999538079790249051876754012315267388099770518808454849597137492221688380877960955364810106285964101815652289789417098698027062234605956928774192712715713467174469776627560822586797145232593479775831666966186399930890836082626751447147798189998450572382748801481850727040086505612245864633557441508984056259189208153189153027768877873426262045156798100163261089735164265744536428502044658466585308075759031290861125845391081583944018865390962204839396100630676431777912191,408146688)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.10; g = G.12; h = G.14; i = G.16; j = G.17; k = G.18; l = G.19; m = G.20; n = G.21;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(813885850494806829814241379846820078413855168152761869600568991324511680628592538706547333606422940642095520799703060179166416504594886289641973815219004540549084135255345506729165936218679616980703258879765855685541767559411759127107527080429906104013513983637387249374675478670795457101045767991242481586419679327847390370400451063622932299910088598653291465877969491312530885547885914570864762210153282482772613704782296892836241407267259708088714849345120255579397926062048000827166036158802932321612239711601929816157688370689170192723739916360542277447504428099520392544111352176935241157484220897419207748536372032392037955225540906325972895106347557165189448475584114985861999538079790249051876754012315267388099770518808454849597137492221688380877960955364810106285964101815652289789417098698027062234605956928774192712715713467174469776627560822586797145232593479775831666966186399930890836082626751447147798189998450572382748801481850727040086505612245864633557441508984056259189208153189153027768877873426262045156798100163261089735164265744536428502044658466585308075759031290861125845391081583944018865390962204839396100630676431777912191,408146688)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.10; g = G.12; h = G.14; i = G.16; j = G.17; k = G.18; l = G.19; m = G.20; n = G.21;
 
Permutation group:Degree $36$ $\langle(1,8)(2,9,3,7)(4,34,5,35)(6,36)(10,29,15,32,11,28,14,31,12,30,13,33)(16,25,20,22,18,26,19,24,17,27,21,23) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,8)(2,9,3,7)(4,34,5,35)(6,36)(10,29,15,32,11,28,14,31,12,30,13,33)(16,25,20,22,18,26,19,24,17,27,21,23), (1,4)(2,6,3,5)(7,36,8,35)(9,34)(10,28,13,33,11,30,15,32,12,29,14,31)(16,25,20,24,17,27,21,22,18,26,19,23), (1,10,26,35,13,24)(2,12,27,34,14,23)(3,11,25,36,15,22)(4,20,30,9,18,31,6,19,29,7,16,32,5,21,28,8,17,33) >;
 
Copy content gap:G := Group( (1,8)(2,9,3,7)(4,34,5,35)(6,36)(10,29,15,32,11,28,14,31,12,30,13,33)(16,25,20,22,18,26,19,24,17,27,21,23), (1,4)(2,6,3,5)(7,36,8,35)(9,34)(10,28,13,33,11,30,15,32,12,29,14,31)(16,25,20,24,17,27,21,22,18,26,19,23), (1,10,26,35,13,24)(2,12,27,34,14,23)(3,11,25,36,15,22)(4,20,30,9,18,31,6,19,29,7,16,32,5,21,28,8,17,33) );
 
Copy content sage:G = PermutationGroup(['(1,8)(2,9,3,7)(4,34,5,35)(6,36)(10,29,15,32,11,28,14,31,12,30,13,33)(16,25,20,22,18,26,19,24,17,27,21,23)', '(1,4)(2,6,3,5)(7,36,8,35)(9,34)(10,28,13,33,11,30,15,32,12,29,14,31)(16,25,20,24,17,27,21,22,18,26,19,23)', '(1,10,26,35,13,24)(2,12,27,34,14,23)(3,11,25,36,15,22)(4,20,30,9,18,31,6,19,29,7,16,32,5,21,28,8,17,33)'])
 
Transitive group: 36T87337 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_3^{12}.C_2^5)$ . $S_4$ (3) $(C_3^{12}.C_2^6)$ . $D_6$ (3) $(C_3^{12}.C_2^6.C_2)$ . $S_3$ $(C_3^{12}.C_2^4.C_6)$ . $D_4$ (2) all 49

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2}^{3} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{5} \times C_{6}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 96 normal subgroups (40 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_3^4$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 5 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $14394 \times 14394$ character table is not available for this group.

Rational character table

The $14378 \times 14378$ rational character table is not available for this group.