| Presentation: | 
    ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n \mid c^{6}=d^{6}=e^{6}= \!\cdots\! \rangle}$
    
    
    
         
    
    
         
    
 | 
 
    
    
    
         
        magma:G := PCGroup([21, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 4776401322, 4373282761, 106, 16335878330, 2939372, 8448654819, 9635774424, 2168053569, 234, 14409891724, 16912576825, 6066772786, 20718996485, 2199339350, 3357071345, 1951714616, 362, 3490179846, 15335963775, 8120649018, 2955986025, 62456793847, 16769698876, 5964650545, 378997990, 2122887403, 858284896, 379500541, 490, 35873518472, 21781021529, 16305026270, 2292689519, 737773709, 37692398529, 9894675450, 5556567921, 4222879992, 264547194, 266176395, 13886616, 34973367, 618, 27159590314, 43161636703, 13646156884, 874793419, 161968117, 21682031627, 676399280, 15246144701, 5526263306, 3021792575, 491902100, 500692889, 111413390, 41971787, 23625200, 8138561, 746, 66847592460, 38746929345, 17059914198, 1261679403, 31960773, 147223599, 34204917, 68450552365, 43304139682, 28853423479, 7615145740, 2490753985, 1317200086, 200228251, 37277008, 93954349, 17156866, 7689499, 5177584, 117571, 874, 117398990534, 272321, 52296523812, 564351033, 6725182542, 252129186, 31135308, 4320, 18788184613, 18238530298, 4230672847, 705112249, 38941765, 6490507, 13141, 61373168657, 25819057190, 36241914299, 8641624400, 728953466, 40252670, 6708992, 41114, 120853410066, 19434836775, 36356548092, 843913851, 7771173, 129567, 102523760659, 59609571880, 31450809661, 12952638802, 1855042684, 36923248, 8951290, 408532, 73330354964, 27035938985, 16233908606, 13867749587, 1673457533, 54296087, 64202753, 1286249]); a,b,c,d,e,f,g,h,i,j,k,l,m,n := Explode([G.1, G.2, G.4, G.6, G.8, G.10, G.12, G.14, G.16, G.17, G.18, G.19, G.20, G.21]); AssignNames(~G, ["a", "b", "b2", "c", "c2", "d", "d2", "e", "e2", "f", "f2", "g", "g2", "h", "h2", "i", "j", "k", "l", "m", "n"]);
          
     
    
    
         
        gap:G := PcGroupCode(813885850494806829814241379846820078413855168152761869600568991324511680628592538706547333606422940642095520799703060179166416504594886289641973815219004540549084135255345506729165936218679616980703258879765855685541767559411759127107527080429906104013513983637387249374675478670795457101045767991242481586419679327847390370400451063622932299910088598653291465877969491312530885547885914570864762210153282482772613704782296892836241407267259708088714849345120255579397926062048000827166036158802932321612239711601929816157688370689170192723739916360542277447504428099520392544111352176935241157484220897419207748536372032392037955225540906325972895106347557165189448475584114985861999538079790249051876754012315267388099770518808454849597137492221688380877960955364810106285964101815652289789417098698027062234605956928774192712715713467174469776627560822586797145232593479775831666966186399930890836082626751447147798189998450572382748801481850727040086505612245864633557441508984056259189208153189153027768877873426262045156798100163261089735164265744536428502044658466585308075759031290861125845391081583944018865390962204839396100630676431777912191,408146688); a := G.1; b := G.2; c := G.4; d := G.6; e := G.8; f := G.10; g := G.12; h := G.14; i := G.16; j := G.17; k := G.18; l := G.19; m := G.20; n := G.21;
          
     
    
    
         
        sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(813885850494806829814241379846820078413855168152761869600568991324511680628592538706547333606422940642095520799703060179166416504594886289641973815219004540549084135255345506729165936218679616980703258879765855685541767559411759127107527080429906104013513983637387249374675478670795457101045767991242481586419679327847390370400451063622932299910088598653291465877969491312530885547885914570864762210153282482772613704782296892836241407267259708088714849345120255579397926062048000827166036158802932321612239711601929816157688370689170192723739916360542277447504428099520392544111352176935241157484220897419207748536372032392037955225540906325972895106347557165189448475584114985861999538079790249051876754012315267388099770518808454849597137492221688380877960955364810106285964101815652289789417098698027062234605956928774192712715713467174469776627560822586797145232593479775831666966186399930890836082626751447147798189998450572382748801481850727040086505612245864633557441508984056259189208153189153027768877873426262045156798100163261089735164265744536428502044658466585308075759031290861125845391081583944018865390962204839396100630676431777912191,408146688)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.10; g = G.12; h = G.14; i = G.16; j = G.17; k = G.18; l = G.19; m = G.20; n = G.21;
          
     
    
    
         
        sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(813885850494806829814241379846820078413855168152761869600568991324511680628592538706547333606422940642095520799703060179166416504594886289641973815219004540549084135255345506729165936218679616980703258879765855685541767559411759127107527080429906104013513983637387249374675478670795457101045767991242481586419679327847390370400451063622932299910088598653291465877969491312530885547885914570864762210153282482772613704782296892836241407267259708088714849345120255579397926062048000827166036158802932321612239711601929816157688370689170192723739916360542277447504428099520392544111352176935241157484220897419207748536372032392037955225540906325972895106347557165189448475584114985861999538079790249051876754012315267388099770518808454849597137492221688380877960955364810106285964101815652289789417098698027062234605956928774192712715713467174469776627560822586797145232593479775831666966186399930890836082626751447147798189998450572382748801481850727040086505612245864633557441508984056259189208153189153027768877873426262045156798100163261089735164265744536428502044658466585308075759031290861125845391081583944018865390962204839396100630676431777912191,408146688)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.10; g = G.12; h = G.14; i = G.16; j = G.17; k = G.18; l = G.19; m = G.20; n = G.21;
          
     
     | 
| Permutation group: | Degree $36$
    $\langle(1,8)(2,9,3,7)(4,34,5,35)(6,36)(10,29,15,32,11,28,14,31,12,30,13,33)(16,25,20,22,18,26,19,24,17,27,21,23) \!\cdots\! \rangle$
    
    
    
         
    
    
         
    
 | 
 
    
    
    
         
        magma:G := PermutationGroup< 36 | (1,8)(2,9,3,7)(4,34,5,35)(6,36)(10,29,15,32,11,28,14,31,12,30,13,33)(16,25,20,22,18,26,19,24,17,27,21,23), (1,4)(2,6,3,5)(7,36,8,35)(9,34)(10,28,13,33,11,30,15,32,12,29,14,31)(16,25,20,24,17,27,21,22,18,26,19,23), (1,10,26,35,13,24)(2,12,27,34,14,23)(3,11,25,36,15,22)(4,20,30,9,18,31,6,19,29,7,16,32,5,21,28,8,17,33) >;
          
     
    
    
         
        gap:G := Group( (1,8)(2,9,3,7)(4,34,5,35)(6,36)(10,29,15,32,11,28,14,31,12,30,13,33)(16,25,20,22,18,26,19,24,17,27,21,23), (1,4)(2,6,3,5)(7,36,8,35)(9,34)(10,28,13,33,11,30,15,32,12,29,14,31)(16,25,20,24,17,27,21,22,18,26,19,23), (1,10,26,35,13,24)(2,12,27,34,14,23)(3,11,25,36,15,22)(4,20,30,9,18,31,6,19,29,7,16,32,5,21,28,8,17,33) );
          
     
    
    
         
        sage:G = PermutationGroup(['(1,8)(2,9,3,7)(4,34,5,35)(6,36)(10,29,15,32,11,28,14,31,12,30,13,33)(16,25,20,22,18,26,19,24,17,27,21,23)', '(1,4)(2,6,3,5)(7,36,8,35)(9,34)(10,28,13,33,11,30,15,32,12,29,14,31)(16,25,20,24,17,27,21,22,18,26,19,23)', '(1,10,26,35,13,24)(2,12,27,34,14,23)(3,11,25,36,15,22)(4,20,30,9,18,31,6,19,29,7,16,32,5,21,28,8,17,33)'])
          
     
     | 
  | Transitive group: | 
  36T87337 | 
   | 
   | 
   | 
  more information | 
  | Direct product: | 
  not computed | 
  | Semidirect product: | 
  not computed | 
  | Trans. wreath product: | 
  not isomorphic to a non-trivial transitive wreath product | 
  | Possibly split product: | 
  $(C_3^{12}.C_2^5)$ . $S_4$ (3) | 
  $(C_3^{12}.C_2^6)$ . $D_6$ (3) | 
  $(C_3^{12}.C_2^6.C_2)$ . $S_3$ | 
  $(C_3^{12}.C_2^4.C_6)$ . $D_4$ (2) | 
  all 49 | 
Elements of the group are displayed as permutations of degree 36.
 
 The $14394 \times 14394$ character table is not available for this group. 
  
  
      The $14378 \times 14378$ rational character table is not available for this group.