| Permutation group: | Degree $244$
$\langle(2,4,14,6,16,19,5,15,8)(3,9,29,11,31,34,10,30,12)(7,22,21,24,62,59,23,61,26) \!\cdots\! \rangle$
|
magma:G := PermutationGroup< 244 | (2,4,14,6,16,19,5,15,8)(3,9,29,11,31,34,10,30,12)(7,22,21,24,62,59,23,61,26)(13,38,35,40,100,56,39,57,20)(17,47,74,49,123,73,48,76,27)(18,51,42,53,75,63,52,95,36)(25,67,147,69,131,130,68,145,71)(28,32,84,78,86,99,77,85,79)(33,87,97,89,140,96,88,98,37)(41,103,149,105,158,148,104,150,70)(43,107,65,109,154,93,108,82,110)(44,112,81,114,101,153,113,60,115)(45,116,132,118,133,54,117,141,119)(46,120,137,122,111,91,121,125,80)(50,127,66,129,152,146,128,151,72)(55,134,159,94,64,143,135,144,136)(58,90,160,102,161,162,138,124,139)(83,155,106,157,126,92,156,163,142)(164,165,169,167,171,180,176,185,198,168,172,181,177,186,199,193,206,219,178,187,200,194,207,220,213,226,235,166,170,179,174,183,196,190,203,216,175,184,197,191,204,217,211,224,233,192,205,218,212,225,234,229,238,242,173,182,195,188,201,214,208,221,230,189,202,215,209,222,231,227,236,240,210,223,232,228,237,241,239,243,244), (2,5,6)(3,10,11)(4,15,16)(7,23,24)(8,19,14)(9,30,31)(12,34,29)(13,39,40)(17,48,49)(18,52,53)(20,56,35)(21,26,59)(22,61,62)(25,68,69)(27,73,74)(28,77,78)(32,85,86)(33,88,89)(36,63,42)(37,96,97)(38,57,100)(41,104,105)(43,108,109)(44,113,114)(45,117,118)(46,121,122)(47,76,123)(50,128,129)(51,95,75)(54,132,119)(55,135,94)(58,138,102)(60,101,112)(64,134,144)(65,110,93)(66,72,146)(67,145,131)(70,148,149)(71,130,147)(79,99,84)(80,91,137)(81,115,153)(82,154,107)(83,156,157)(87,98,140)(90,124,161)(92,106,142)(103,150,158)(111,120,125)(116,141,133)(126,155,163)(127,151,152)(136,143,159)(139,162,160)(164,166,173)(165,170,182)(167,174,188)(168,175,189)(169,179,195)(171,183,201)(172,184,202)(176,190,208)(177,191,209)(178,192,210)(180,196,214)(181,197,215)(185,203,221)(186,204,222)(187,205,223)(193,211,227)(194,212,228)(198,216,230)(199,217,231)(200,218,232)(206,224,236)(207,225,237)(213,229,239)(219,233,240)(220,234,241)(226,238,243)(235,242,244), (2,6,5)(3,11,10)(4,16,15)(7,24,23)(8,14,19)(9,31,30)(12,29,34)(13,40,39)(17,49,48)(18,53,52)(20,35,56)(21,59,26)(22,62,61)(25,69,68)(27,74,73)(28,78,77)(32,86,85)(33,89,88)(36,42,63)(37,97,96)(38,100,57)(41,105,104)(43,109,108)(44,114,113)(45,118,117)(46,122,121)(47,123,76)(50,129,128)(51,75,95)(54,119,132)(55,94,135)(58,102,138)(60,112,101)(64,144,134)(65,93,110)(66,146,72)(67,131,145)(70,149,148)(71,147,130)(79,84,99)(80,137,91)(81,153,115)(82,107,154)(83,157,156)(87,140,98)(90,161,124)(92,142,106)(103,158,150)(111,125,120)(116,133,141)(126,163,155)(127,152,151)(136,159,143)(139,160,162)(164,167,176,168,177,193,178,194,213,166,174,190,175,191,211,192,212,229,173,188,208,189,209,227,210,228,239)(165,171,185,172,186,206,187,207,226,170,183,203,184,204,224,205,225,238,182,201,221,202,222,236,223,237,243)(169,180,198,181,199,219,200,220,235,179,196,216,197,217,233,218,234,242,195,214,230,215,231,240,232,241,244), (164,168,178,166,175,192,173,189,210)(165,172,187,170,184,205,182,202,223)(167,177,194,174,191,212,188,209,228)(169,181,200,179,197,218,195,215,232)(171,186,207,183,204,225,201,222,237)(176,193,213,190,211,229,208,227,239)(180,199,220,196,217,234,214,231,241)(185,206,226,203,224,238,221,236,243)(198,219,235,216,233,242,230,240,244), (164,166,173)(165,170,182)(167,174,188)(168,175,189)(169,179,195)(171,183,201)(172,184,202)(176,190,208)(177,191,209)(178,192,210)(180,196,214)(181,197,215)(185,203,221)(186,204,222)(187,205,223)(193,211,227)(194,212,228)(198,216,230)(199,217,231)(200,218,232)(206,224,236)(207,225,237)(213,229,239)(219,233,240)(220,234,241)(226,238,243)(235,242,244), (1,2,7,25,70,115,142,62,141,124,47,68,146,112,105,95,162,116,134,86,85,157,92,34,91,126,49,113,132,78,29,81,136,161,139,73,109,44,15,18,4,17,50,103,66,24,56,39,101,150,127,80,28,8,27,75,58,20,5,11,35,93,123,143,107,156,144,88,159,148,84,158,98,147,74,135,61,83,31,64,22,63,77,38,46,16,45,57,137,97,149,76,131,51,130,125,48,122,117,114,120,140,60,21,6,10,26,72,99,37,12,36,94,160,145,65,23,59,40,102,67,90,33,9,32,30,82,153,96,151,129,111,43,14,42,106,154,89,133,55,19,54,118,52,53,121,155,152,79,69,110,138,104,87,128,163,100,119,108,71,41,13,3) >;
gap:G := Group( (2,4,14,6,16,19,5,15,8)(3,9,29,11,31,34,10,30,12)(7,22,21,24,62,59,23,61,26)(13,38,35,40,100,56,39,57,20)(17,47,74,49,123,73,48,76,27)(18,51,42,53,75,63,52,95,36)(25,67,147,69,131,130,68,145,71)(28,32,84,78,86,99,77,85,79)(33,87,97,89,140,96,88,98,37)(41,103,149,105,158,148,104,150,70)(43,107,65,109,154,93,108,82,110)(44,112,81,114,101,153,113,60,115)(45,116,132,118,133,54,117,141,119)(46,120,137,122,111,91,121,125,80)(50,127,66,129,152,146,128,151,72)(55,134,159,94,64,143,135,144,136)(58,90,160,102,161,162,138,124,139)(83,155,106,157,126,92,156,163,142)(164,165,169,167,171,180,176,185,198,168,172,181,177,186,199,193,206,219,178,187,200,194,207,220,213,226,235,166,170,179,174,183,196,190,203,216,175,184,197,191,204,217,211,224,233,192,205,218,212,225,234,229,238,242,173,182,195,188,201,214,208,221,230,189,202,215,209,222,231,227,236,240,210,223,232,228,237,241,239,243,244), (2,5,6)(3,10,11)(4,15,16)(7,23,24)(8,19,14)(9,30,31)(12,34,29)(13,39,40)(17,48,49)(18,52,53)(20,56,35)(21,26,59)(22,61,62)(25,68,69)(27,73,74)(28,77,78)(32,85,86)(33,88,89)(36,63,42)(37,96,97)(38,57,100)(41,104,105)(43,108,109)(44,113,114)(45,117,118)(46,121,122)(47,76,123)(50,128,129)(51,95,75)(54,132,119)(55,135,94)(58,138,102)(60,101,112)(64,134,144)(65,110,93)(66,72,146)(67,145,131)(70,148,149)(71,130,147)(79,99,84)(80,91,137)(81,115,153)(82,154,107)(83,156,157)(87,98,140)(90,124,161)(92,106,142)(103,150,158)(111,120,125)(116,141,133)(126,155,163)(127,151,152)(136,143,159)(139,162,160)(164,166,173)(165,170,182)(167,174,188)(168,175,189)(169,179,195)(171,183,201)(172,184,202)(176,190,208)(177,191,209)(178,192,210)(180,196,214)(181,197,215)(185,203,221)(186,204,222)(187,205,223)(193,211,227)(194,212,228)(198,216,230)(199,217,231)(200,218,232)(206,224,236)(207,225,237)(213,229,239)(219,233,240)(220,234,241)(226,238,243)(235,242,244), (2,6,5)(3,11,10)(4,16,15)(7,24,23)(8,14,19)(9,31,30)(12,29,34)(13,40,39)(17,49,48)(18,53,52)(20,35,56)(21,59,26)(22,62,61)(25,69,68)(27,74,73)(28,78,77)(32,86,85)(33,89,88)(36,42,63)(37,97,96)(38,100,57)(41,105,104)(43,109,108)(44,114,113)(45,118,117)(46,122,121)(47,123,76)(50,129,128)(51,75,95)(54,119,132)(55,94,135)(58,102,138)(60,112,101)(64,144,134)(65,93,110)(66,146,72)(67,131,145)(70,149,148)(71,147,130)(79,84,99)(80,137,91)(81,153,115)(82,107,154)(83,157,156)(87,140,98)(90,161,124)(92,142,106)(103,158,150)(111,125,120)(116,133,141)(126,163,155)(127,152,151)(136,159,143)(139,160,162)(164,167,176,168,177,193,178,194,213,166,174,190,175,191,211,192,212,229,173,188,208,189,209,227,210,228,239)(165,171,185,172,186,206,187,207,226,170,183,203,184,204,224,205,225,238,182,201,221,202,222,236,223,237,243)(169,180,198,181,199,219,200,220,235,179,196,216,197,217,233,218,234,242,195,214,230,215,231,240,232,241,244), (164,168,178,166,175,192,173,189,210)(165,172,187,170,184,205,182,202,223)(167,177,194,174,191,212,188,209,228)(169,181,200,179,197,218,195,215,232)(171,186,207,183,204,225,201,222,237)(176,193,213,190,211,229,208,227,239)(180,199,220,196,217,234,214,231,241)(185,206,226,203,224,238,221,236,243)(198,219,235,216,233,242,230,240,244), (164,166,173)(165,170,182)(167,174,188)(168,175,189)(169,179,195)(171,183,201)(172,184,202)(176,190,208)(177,191,209)(178,192,210)(180,196,214)(181,197,215)(185,203,221)(186,204,222)(187,205,223)(193,211,227)(194,212,228)(198,216,230)(199,217,231)(200,218,232)(206,224,236)(207,225,237)(213,229,239)(219,233,240)(220,234,241)(226,238,243)(235,242,244), (1,2,7,25,70,115,142,62,141,124,47,68,146,112,105,95,162,116,134,86,85,157,92,34,91,126,49,113,132,78,29,81,136,161,139,73,109,44,15,18,4,17,50,103,66,24,56,39,101,150,127,80,28,8,27,75,58,20,5,11,35,93,123,143,107,156,144,88,159,148,84,158,98,147,74,135,61,83,31,64,22,63,77,38,46,16,45,57,137,97,149,76,131,51,130,125,48,122,117,114,120,140,60,21,6,10,26,72,99,37,12,36,94,160,145,65,23,59,40,102,67,90,33,9,32,30,82,153,96,151,129,111,43,14,42,106,154,89,133,55,19,54,118,52,53,121,155,152,79,69,110,138,104,87,128,163,100,119,108,71,41,13,3) );
sage:G = PermutationGroup(['(2,4,14,6,16,19,5,15,8)(3,9,29,11,31,34,10,30,12)(7,22,21,24,62,59,23,61,26)(13,38,35,40,100,56,39,57,20)(17,47,74,49,123,73,48,76,27)(18,51,42,53,75,63,52,95,36)(25,67,147,69,131,130,68,145,71)(28,32,84,78,86,99,77,85,79)(33,87,97,89,140,96,88,98,37)(41,103,149,105,158,148,104,150,70)(43,107,65,109,154,93,108,82,110)(44,112,81,114,101,153,113,60,115)(45,116,132,118,133,54,117,141,119)(46,120,137,122,111,91,121,125,80)(50,127,66,129,152,146,128,151,72)(55,134,159,94,64,143,135,144,136)(58,90,160,102,161,162,138,124,139)(83,155,106,157,126,92,156,163,142)(164,165,169,167,171,180,176,185,198,168,172,181,177,186,199,193,206,219,178,187,200,194,207,220,213,226,235,166,170,179,174,183,196,190,203,216,175,184,197,191,204,217,211,224,233,192,205,218,212,225,234,229,238,242,173,182,195,188,201,214,208,221,230,189,202,215,209,222,231,227,236,240,210,223,232,228,237,241,239,243,244)', '(2,5,6)(3,10,11)(4,15,16)(7,23,24)(8,19,14)(9,30,31)(12,34,29)(13,39,40)(17,48,49)(18,52,53)(20,56,35)(21,26,59)(22,61,62)(25,68,69)(27,73,74)(28,77,78)(32,85,86)(33,88,89)(36,63,42)(37,96,97)(38,57,100)(41,104,105)(43,108,109)(44,113,114)(45,117,118)(46,121,122)(47,76,123)(50,128,129)(51,95,75)(54,132,119)(55,135,94)(58,138,102)(60,101,112)(64,134,144)(65,110,93)(66,72,146)(67,145,131)(70,148,149)(71,130,147)(79,99,84)(80,91,137)(81,115,153)(82,154,107)(83,156,157)(87,98,140)(90,124,161)(92,106,142)(103,150,158)(111,120,125)(116,141,133)(126,155,163)(127,151,152)(136,143,159)(139,162,160)(164,166,173)(165,170,182)(167,174,188)(168,175,189)(169,179,195)(171,183,201)(172,184,202)(176,190,208)(177,191,209)(178,192,210)(180,196,214)(181,197,215)(185,203,221)(186,204,222)(187,205,223)(193,211,227)(194,212,228)(198,216,230)(199,217,231)(200,218,232)(206,224,236)(207,225,237)(213,229,239)(219,233,240)(220,234,241)(226,238,243)(235,242,244)', '(2,6,5)(3,11,10)(4,16,15)(7,24,23)(8,14,19)(9,31,30)(12,29,34)(13,40,39)(17,49,48)(18,53,52)(20,35,56)(21,59,26)(22,62,61)(25,69,68)(27,74,73)(28,78,77)(32,86,85)(33,89,88)(36,42,63)(37,97,96)(38,100,57)(41,105,104)(43,109,108)(44,114,113)(45,118,117)(46,122,121)(47,123,76)(50,129,128)(51,75,95)(54,119,132)(55,94,135)(58,102,138)(60,112,101)(64,144,134)(65,93,110)(66,146,72)(67,131,145)(70,149,148)(71,147,130)(79,84,99)(80,137,91)(81,153,115)(82,107,154)(83,157,156)(87,140,98)(90,161,124)(92,142,106)(103,158,150)(111,125,120)(116,133,141)(126,163,155)(127,152,151)(136,159,143)(139,160,162)(164,167,176,168,177,193,178,194,213,166,174,190,175,191,211,192,212,229,173,188,208,189,209,227,210,228,239)(165,171,185,172,186,206,187,207,226,170,183,203,184,204,224,205,225,238,182,201,221,202,222,236,223,237,243)(169,180,198,181,199,219,200,220,235,179,196,216,197,217,233,218,234,242,195,214,230,215,231,240,232,241,244)', '(164,168,178,166,175,192,173,189,210)(165,172,187,170,184,205,182,202,223)(167,177,194,174,191,212,188,209,228)(169,181,200,179,197,218,195,215,232)(171,186,207,183,204,225,201,222,237)(176,193,213,190,211,229,208,227,239)(180,199,220,196,217,234,214,231,241)(185,206,226,203,224,238,221,236,243)(198,219,235,216,233,242,230,240,244)', '(164,166,173)(165,170,182)(167,174,188)(168,175,189)(169,179,195)(171,183,201)(172,184,202)(176,190,208)(177,191,209)(178,192,210)(180,196,214)(181,197,215)(185,203,221)(186,204,222)(187,205,223)(193,211,227)(194,212,228)(198,216,230)(199,217,231)(200,218,232)(206,224,236)(207,225,237)(213,229,239)(219,233,240)(220,234,241)(226,238,243)(235,242,244)', '(1,2,7,25,70,115,142,62,141,124,47,68,146,112,105,95,162,116,134,86,85,157,92,34,91,126,49,113,132,78,29,81,136,161,139,73,109,44,15,18,4,17,50,103,66,24,56,39,101,150,127,80,28,8,27,75,58,20,5,11,35,93,123,143,107,156,144,88,159,148,84,158,98,147,74,135,61,83,31,64,22,63,77,38,46,16,45,57,137,97,149,76,131,51,130,125,48,122,117,114,120,140,60,21,6,10,26,72,99,37,12,36,94,160,145,65,23,59,40,102,67,90,33,9,32,30,82,153,96,151,129,111,43,14,42,106,154,89,133,55,19,54,118,52,53,121,155,152,79,69,110,138,104,87,128,163,100,119,108,71,41,13,3)'])
|