Properties

Label 393216.es
Order \( 2^{17} \cdot 3 \)
Exponent \( 2^{3} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{2} \)
$\card{Z(G)}$ \( 2 \)
$\card{\Aut(G)}$ \( 2^{23} \cdot 3 \)
$\card{\mathrm{Out}(G)}$ \( 2^{7} \)
Perm deg. $24$
Trans deg. $24$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 24 | (1,21)(2,22)(3,19,4,20)(5,18,6,17)(7,14,9,15)(8,13,10,16)(11,24,12,23), (1,24,10,19,6,16)(2,23,9,20,5,15)(3,13,11,22,7,17)(4,14,12,21,8,18) >;
 
Copy content gap:G := Group( (1,21)(2,22)(3,19,4,20)(5,18,6,17)(7,14,9,15)(8,13,10,16)(11,24,12,23), (1,24,10,19,6,16)(2,23,9,20,5,15)(3,13,11,22,7,17)(4,14,12,21,8,18) );
 
Copy content sage:G = PermutationGroup(['(1,21)(2,22)(3,19,4,20)(5,18,6,17)(7,14,9,15)(8,13,10,16)(11,24,12,23)', '(1,24,10,19,6,16)(2,23,9,20,5,15)(3,13,11,22,7,17)(4,14,12,21,8,18)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(6672291833760322023080170562559963252491615535993567020437551258019505133075842717562881054060938643263753952683084597189544591948978118554252090596770173855460565700834283426022706720352549617178849446922714161086243119381741113119498967813762475720949954309334867159744654724331392914947933327801363143153546257440826990879020729594783725654085573405153292012758929666167960838377458894371550515395411429874073568263842833108171365351986783440373540516869187711621317598852208538661044105375636914994443049150043627309810544768121246019958004809728,393216)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.8; g = G.10; h = G.11; i = G.13; j = G.14; k = G.16; l = G.17; m = G.18;
 

Group information

Description:$C_2^8.C_2^4:\GL(2,\mathbb{Z}/4)$
Order: \(393216\)\(\medspace = 2^{17} \cdot 3 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(25165824\)\(\medspace = 2^{23} \cdot 3 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 17, $C_3$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 12
Elements 1 5695 8192 133568 57344 122880 65536 393216
Conjugacy classes   1 73 1 214 4 52 5 350
Divisions 1 73 1 184 3 36 3 301
Autjugacy classes 1 37 1 72 3 14 3 131

Minimal presentations

Permutation degree:$24$
Transitive degree:$24$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 12 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m \mid b^{6}=c^{2}=e^{2}=f^{4}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([18, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 648756, 2472481, 91, 13774322, 3104355, 681285, 1462791, 16745944, 8459662, 3979570, 2314678, 256, 10663493, 9302711, 2742377, 1576427, 173759, 34074438, 18086568, 11368770, 145734, 202956, 10706695, 26545561, 2676715, 2066749, 1328335, 332755, 421, 12441608, 6251930, 3110444, 40670649, 32552307, 12852585, 2638143, 1507761, 936099, 560277, 208215, 34731, 23277682, 31141072, 17435728, 76096, 1162738, 1324324, 364438, 356536, 20368, 586, 5391371, 2695709, 1493039, 663635, 88241412, 40558782, 19863840, 3474498, 1025004, 1347942, 374520, 456906, 17022, 27336, 9873373, 22040455, 17966389, 3870787, 1457653, 419449, 60655, 1741, 751, 19906574, 6687392, 207410, 280886, 10672161, 3787827, 336471, 112803856, 52700578, 9664756, 4426072, 79626257, 43794467, 19906613, 2659481]); a,b,c,d,e,f,g,h,i,j,k,l,m := Explode([G.1, G.2, G.4, G.5, G.7, G.8, G.10, G.11, G.13, G.14, G.16, G.17, G.18]); AssignNames(~G, ["a", "b", "b2", "c", "d", "d2", "e", "f", "f2", "g", "h", "h2", "i", "j", "j2", "k", "l", "m"]);
 
Copy content gap:G := PcGroupCode(6672291833760322023080170562559963252491615535993567020437551258019505133075842717562881054060938643263753952683084597189544591948978118554252090596770173855460565700834283426022706720352549617178849446922714161086243119381741113119498967813762475720949954309334867159744654724331392914947933327801363143153546257440826990879020729594783725654085573405153292012758929666167960838377458894371550515395411429874073568263842833108171365351986783440373540516869187711621317598852208538661044105375636914994443049150043627309810544768121246019958004809728,393216); a := G.1; b := G.2; c := G.4; d := G.5; e := G.7; f := G.8; g := G.10; h := G.11; i := G.13; j := G.14; k := G.16; l := G.17; m := G.18;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(6672291833760322023080170562559963252491615535993567020437551258019505133075842717562881054060938643263753952683084597189544591948978118554252090596770173855460565700834283426022706720352549617178849446922714161086243119381741113119498967813762475720949954309334867159744654724331392914947933327801363143153546257440826990879020729594783725654085573405153292012758929666167960838377458894371550515395411429874073568263842833108171365351986783440373540516869187711621317598852208538661044105375636914994443049150043627309810544768121246019958004809728,393216)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.8; g = G.10; h = G.11; i = G.13; j = G.14; k = G.16; l = G.17; m = G.18;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(6672291833760322023080170562559963252491615535993567020437551258019505133075842717562881054060938643263753952683084597189544591948978118554252090596770173855460565700834283426022706720352549617178849446922714161086243119381741113119498967813762475720949954309334867159744654724331392914947933327801363143153546257440826990879020729594783725654085573405153292012758929666167960838377458894371550515395411429874073568263842833108171365351986783440373540516869187711621317598852208538661044105375636914994443049150043627309810544768121246019958004809728,393216)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.8; g = G.10; h = G.11; i = G.13; j = G.14; k = G.16; l = G.17; m = G.18;
 
Permutation group:Degree $24$ $\langle(1,21)(2,22)(3,19,4,20)(5,18,6,17)(7,14,9,15)(8,13,10,16)(11,24,12,23), (1,24,10,19,6,16)(2,23,9,20,5,15)(3,13,11,22,7,17)(4,14,12,21,8,18)\rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 24 | (1,21)(2,22)(3,19,4,20)(5,18,6,17)(7,14,9,15)(8,13,10,16)(11,24,12,23), (1,24,10,19,6,16)(2,23,9,20,5,15)(3,13,11,22,7,17)(4,14,12,21,8,18) >;
 
Copy content gap:G := Group( (1,21)(2,22)(3,19,4,20)(5,18,6,17)(7,14,9,15)(8,13,10,16)(11,24,12,23), (1,24,10,19,6,16)(2,23,9,20,5,15)(3,13,11,22,7,17)(4,14,12,21,8,18) );
 
Copy content sage:G = PermutationGroup(['(1,21)(2,22)(3,19,4,20)(5,18,6,17)(7,14,9,15)(8,13,10,16)(11,24,12,23)', '(1,24,10,19,6,16)(2,23,9,20,5,15)(3,13,11,22,7,17)(4,14,12,21,8,18)'])
 
Transitive group: 24T19764 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_2^8.C_2^6)$ . $S_4$ (2) $(C_2^9.C_2^6)$ . $D_6$ $C_2^{10}$ . $(C_2^4:S_4)$ $(C_2^8.C_2^6:A_4)$ . $C_2$ all 29

Elements of the group are displayed as permutations of degree 24.

Homology

Abelianization: $C_{2}^{2} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{7}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $2$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 51 normal subgroups (33 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_2$ $G/Z \simeq$ $C_2^9.C_2^4.C_3.D_4$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_2^8.C_2^6.C_6$ $G/G' \simeq$ $C_2^2$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_2^8.C_2^3$ $G/\Phi \simeq$ $C_2^3:S_4$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_2^8.C_2^6.C_2^2$ $G/\operatorname{Fit} \simeq$ $S_3$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_2^8.C_2^4:\GL(2,\mathbb{Z}/4)$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_2^3$ $G/\operatorname{soc} \simeq$ $C_2^7.C_2\wr S_3$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^9.C_2^6.C_2^2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3$

Subgroup diagram and profile

Series

Derived series $C_2^8.C_2^4:\GL(2,\mathbb{Z}/4)$ $\rhd$ $C_2^8.C_2^6.C_6$ $\rhd$ $C_2^9.C_2^5$ $\rhd$ $C_2^6$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_2^8.C_2^4:\GL(2,\mathbb{Z}/4)$ $\rhd$ $C_2^8.C_2^6.D_6$ $\rhd$ $C_2^8.C_2^6.C_6$ $\rhd$ $C_2^8.C_2^6.C_3$ $\rhd$ $C_2^9.C_2^5$ $\rhd$ $C_2^8.C_2^4$ $\rhd$ $C_2^{10}$ $\rhd$ $C_2^8$ $\rhd$ $C_2^6$ $\rhd$ $C_2^4$ $\rhd$ $C_2^2$ $\rhd$ $C_2$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_2^8.C_2^4:\GL(2,\mathbb{Z}/4)$ $\rhd$ $C_2^8.C_2^6.C_6$ $\rhd$ $C_2^8.C_2^6.C_3$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_2$ $\lhd$ $C_2^2$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 5 larger groups in the database.

This group is a maximal quotient of 1 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $350 \times 350$ character table is not available for this group.

Rational character table

The $301 \times 301$ rational character table is not available for this group.