Properties

Label 38843449344.c
Order \( 2^{22} \cdot 3^{3} \cdot 7^{3} \)
Exponent \( 2^{2} \cdot 3 \cdot 7 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{2} \)
$\card{Z(G)}$ 2
$\card{\Aut(G)}$ \( 2^{23} \cdot 3^{4} \cdot 7^{3} \)
$\card{\mathrm{Out}(G)}$ \( 2^{2} \cdot 3 \)
Perm deg. $42$
Trans deg. $42$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 42 | (1,29,13,34,12,38,9,41,7,32,5,35,4,39)(2,30,14,33,11,37,10,42,8,31,6,36,3,40)(15,28,26,23,22,19,18,16,27,25,24,21,20,17), (1,18)(2,17)(3,15,5,27,10,24,4,16,6,28,9,23)(7,25,13,20,11,22)(8,26,14,19,12,21)(29,33,36)(30,34,35)(31,42,40)(32,41,39)(37,38), (1,40,17,10,36,16,4,32,27,11,42,26,5,38,24,13,34,21,7,30,20)(2,39,18,9,35,15,3,31,28,12,41,25,6,37,23,14,33,22,8,29,19) >;
 
Copy content gap:G := Group( (1,29,13,34,12,38,9,41,7,32,5,35,4,39)(2,30,14,33,11,37,10,42,8,31,6,36,3,40)(15,28,26,23,22,19,18,16,27,25,24,21,20,17), (1,18)(2,17)(3,15,5,27,10,24,4,16,6,28,9,23)(7,25,13,20,11,22)(8,26,14,19,12,21)(29,33,36)(30,34,35)(31,42,40)(32,41,39)(37,38), (1,40,17,10,36,16,4,32,27,11,42,26,5,38,24,13,34,21,7,30,20)(2,39,18,9,35,15,3,31,28,12,41,25,6,37,23,14,33,22,8,29,19) );
 
Copy content sage:G = PermutationGroup(['(1,29,13,34,12,38,9,41,7,32,5,35,4,39)(2,30,14,33,11,37,10,42,8,31,6,36,3,40)(15,28,26,23,22,19,18,16,27,25,24,21,20,17)', '(1,18)(2,17)(3,15,5,27,10,24,4,16,6,28,9,23)(7,25,13,20,11,22)(8,26,14,19,12,21)(29,33,36)(30,34,35)(31,42,40)(32,41,39)(37,38)', '(1,40,17,10,36,16,4,32,27,11,42,26,5,38,24,13,34,21,7,30,20)(2,39,18,9,35,15,3,31,28,12,41,25,6,37,23,14,33,22,8,29,19)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(3830708578144690194139606816296013361154774185710586250380952908562346969676435609010732611268219145178923325961080588760612799936401775751460572424575395701606010443348142090700723760012327058434541312349684296970611443265575357474144828661882505025214438543555495409748085692438741629748750467195965220399090783231562450217803813041296088736366145661053686530705237979706863698613806869915759064283387405653330097985986182104058816165542981982265817128091432785421915977913137977239015826776411394622214743337542415442235360830169632697021599084248875561754457771727477356708008763795394811670086306055886500229531302381452136113617150527373522816144299806585373427336627949770292699763170228320199757332809868811004023488669761532025070349728499520942031192233048664661592421389608416039193093215752142431389752980497785861374910422712055301973012831895968333939188443508679203445443146978629083429321870425567120217160052911940484602996311629339041208153039456516000078085570021882686407326715391064926001142215900184259993594526910263622155522504608145748211466609753857010600641905428918700769256684373669903957345466017191640113040747724460988953775997709959521193145195294659689245381722420358136717364783036197474631921900050491935446874427207119438731656939274899075803997680303738927048183955798430553072163486576291379631900894571071327027714859884545353455784835116579059612201933558587771595272752415974112297526997803812280119211246528672561018924933795242925966037188665545694092924635772762578360169251847667133530068176558261648897503702016054420370814868640817395871592396676715128292549582286083295141221191759334129964779795079683291702747487794083864346423789385719105951665531442664446492958402029339325080069754704108928372392149120506368117154855323773200649672645046216066697040177681666472184042734182509829843941016041108944085229566171021135930085776442824158928818048399096695318865896894967544593448191421577607339346400001257494599821188147361348056805299322451080334819251559692969248514446497443058155032869878774112743140886673407825231623494623330870915711736594374500627236387821276073895589652506764169713838828821345157869104516193042879570198767678931180550390930533026417675990948462712503049302747775263345784624713651850461229562156380923165791131518844773785238949707888450185527311661265865382367688829982866992233599072419591019322562721245465859866797164201091803544818149920269999202235897044322854534224588022721109777797405422769287537130925221733584563109411792514793909612536312728787314880132551408253598177287812770663170712394475956580840670951537642026701357613747439624211523567235082884399836804615229693954182379322338070647664593893864128692838383792660485091248445903534120589728103090480555558345615980992196447031667940750975306213482178949589183950088024729084972553020395959136364065126045565800290668853837884474931785497700000612829791565447168,38843449344)'); a = G.1; b = G.2; c = G.3; d = G.4; e = G.5; f = G.7; g = G.9; h = G.11; i = G.13; j = G.14; k = G.15; l = G.16; m = G.17; n = G.18; o = G.19; p = G.20; q = G.21; r = G.22; s = G.23; t = G.24; u = G.25; v = G.26; w = G.27; x = G.28;
 

Group information

Description:$C_2^{18}.C_7^3.C_6^2.D_6$
Order: \(38843449344\)\(\medspace = 2^{22} \cdot 3^{3} \cdot 7^{3} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(233060696064\)\(\medspace = 2^{23} \cdot 3^{4} \cdot 7^{3} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 22, $C_3$ x 3, $C_7$ x 3
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$5$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 7 12 14 21 28 42
Elements 1 3129343 17335808 131088384 5506038272 57066624 11329339392 3440884608 5577965568 3561062400 9219538944 38843449344
Conjugacy classes   1 415 6 164 1054 17 112 703 8 140 260 2880
Divisions 1 415 5 164 591 9 56 275 4 46 74 1640
Autjugacy classes 1 254 4 47 608 5 34 238 2 19 128 1340

Minimal presentations

Permutation degree:$42$
Transitive degree:$42$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x \mid e^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([28, 2, 2, 3, 3, 2, 3, 2, 7, 2, 7, 2, 7, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 91109382336, 1287019250161, 786607580333, 1103696133794, 819149982198, 767867030338, 1102655266947, 223519481503, 77841474875, 265033557015, 2648907308884, 1099746239792, 594483065880, 281778824128, 396, 1378546948805, 865185650817, 804609780973, 263430033641, 3906914044326, 1451412592090, 858797137862, 599461635366, 111102194398, 40831393406, 566, 6462837932551, 177802200611, 82887646527, 272087020891, 170200227575, 105374478867, 1950967638152, 1147555237284, 2016395582608, 231971085452, 37678680264, 19071627268, 23089158464, 1483589472, 736, 1096065008649, 1569443601637, 957941329025, 886481457213, 13276663801, 28102166549, 18009428817, 10307785245, 2464662816010, 1799741934182, 2053365431106, 577952342446, 210065970698, 109859588142, 31242402138, 2760311914, 3496519106, 1343069682, 906, 828096804875, 5390892444711, 2270317787203, 364783511327, 42575113851, 49478930071, 41009980211, 21758888463, 2392953259, 942009191, 2760339883404, 6193104529288, 325396274180, 119289237072, 63243245644, 93609142688, 16950942188, 7064144204, 955510428, 371024736, 65641868, 146441524, 1766489074573, 6094804274537, 812376698181, 30321057409, 180570105533, 66821943033, 51213253349, 34381475057, 4151540525, 1302533161, 35222277, 93653041, 13265666809934, 3575774341482, 796843111750, 335669019938, 223416315486, 77049050554, 41915121542, 32018775810, 4025448238, 1686078506, 173131014, 79039282, 2502235072527, 3279184667179, 623998771271, 410346365283, 232550443903, 37825447451, 64965495351, 36260116243, 3177244911, 1951796491, 273710375, 83116867, 529280523088, 1177462506572, 135421009992, 226218916324, 250905037952, 15109473948, 65850556088, 37857277908, 3352685296, 2072664204, 232653864, 56884228, 3138243212177, 1376514736173, 652410630217, 210823627493, 6638284929, 36245035165, 84660259001, 41799066837, 6047161585, 2985647885, 63447849, 33530437, 3421206028818, 552837839950, 611717944394, 226281397206, 12752882818, 29990295710, 67665020602, 43525635542, 6798534642, 3196562702, 33486506, 3337030, 2960023046419, 154506078767, 33191424075, 595667623, 235585351811, 17038264479, 21463787707, 1057208535, 1289021683, 987840271, 398899499, 69682247, 3661109492564, 1472106037296, 850364282956, 317434481384, 14869758084, 47242460320, 98357253308, 413049048, 7025518324, 29503760, 2371116, 35825992, 1134943996053, 1781715640369, 96387895373, 351992285673, 101255970949, 5354883233, 87030372541, 1541557465, 6216455413, 110111505, 525719341, 1104201, 4171996039702, 1905453269042, 125198051406, 61184685850, 3053611142, 6955447458, 105915063486, 52505145050, 7565361910, 3750367762, 11540782, 4760778, 5984812044311, 1795622847027, 640461717583, 47913006059, 263761182855, 120551252131, 78420271295, 58564423899, 6140940535, 2834442515, 214352175, 82038091, 8497004544024, 430762449652, 318637670480, 336339763308, 82609766536, 94411161764, 13768294592, 19668992220, 2669363448, 210739476, 190669104, 15053132, 3830770419865, 11377489084469, 1025216704593, 428397461965, 110461059209, 56956483749, 102278758593, 1566143709, 7305625849, 111867669, 607932721, 261078605, 1376514736154, 2353562386614, 2638319910994, 1959621673070, 50982027402, 44609274022, 48857776322, 3186376926, 3034644730, 531063062, 216760626, 37933390, 3330842376987, 13624764233527, 5025978187859, 1910725173615, 539028725899, 272612229287, 138784407747, 15420489951, 8811708667, 2360279319, 115204403, 248848207]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x := Explode([G.1, G.2, G.3, G.4, G.5, G.7, G.9, G.11, G.13, G.14, G.15, G.16, G.17, G.18, G.19, G.20, G.21, G.22, G.23, G.24, G.25, G.26, G.27, G.28]); AssignNames(~G, ["a", "b", "c", "d", "e", "e2", "f", "f2", "g", "g2", "h", "h2", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x"]);
 
Copy content gap:G := PcGroupCode(3830708578144690194139606816296013361154774185710586250380952908562346969676435609010732611268219145178923325961080588760612799936401775751460572424575395701606010443348142090700723760012327058434541312349684296970611443265575357474144828661882505025214438543555495409748085692438741629748750467195965220399090783231562450217803813041296088736366145661053686530705237979706863698613806869915759064283387405653330097985986182104058816165542981982265817128091432785421915977913137977239015826776411394622214743337542415442235360830169632697021599084248875561754457771727477356708008763795394811670086306055886500229531302381452136113617150527373522816144299806585373427336627949770292699763170228320199757332809868811004023488669761532025070349728499520942031192233048664661592421389608416039193093215752142431389752980497785861374910422712055301973012831895968333939188443508679203445443146978629083429321870425567120217160052911940484602996311629339041208153039456516000078085570021882686407326715391064926001142215900184259993594526910263622155522504608145748211466609753857010600641905428918700769256684373669903957345466017191640113040747724460988953775997709959521193145195294659689245381722420358136717364783036197474631921900050491935446874427207119438731656939274899075803997680303738927048183955798430553072163486576291379631900894571071327027714859884545353455784835116579059612201933558587771595272752415974112297526997803812280119211246528672561018924933795242925966037188665545694092924635772762578360169251847667133530068176558261648897503702016054420370814868640817395871592396676715128292549582286083295141221191759334129964779795079683291702747487794083864346423789385719105951665531442664446492958402029339325080069754704108928372392149120506368117154855323773200649672645046216066697040177681666472184042734182509829843941016041108944085229566171021135930085776442824158928818048399096695318865896894967544593448191421577607339346400001257494599821188147361348056805299322451080334819251559692969248514446497443058155032869878774112743140886673407825231623494623330870915711736594374500627236387821276073895589652506764169713838828821345157869104516193042879570198767678931180550390930533026417675990948462712503049302747775263345784624713651850461229562156380923165791131518844773785238949707888450185527311661265865382367688829982866992233599072419591019322562721245465859866797164201091803544818149920269999202235897044322854534224588022721109777797405422769287537130925221733584563109411792514793909612536312728787314880132551408253598177287812770663170712394475956580840670951537642026701357613747439624211523567235082884399836804615229693954182379322338070647664593893864128692838383792660485091248445903534120589728103090480555558345615980992196447031667940750975306213482178949589183950088024729084972553020395959136364065126045565800290668853837884474931785497700000612829791565447168,38843449344); a := G.1; b := G.2; c := G.3; d := G.4; e := G.5; f := G.7; g := G.9; h := G.11; i := G.13; j := G.14; k := G.15; l := G.16; m := G.17; n := G.18; o := G.19; p := G.20; q := G.21; r := G.22; s := G.23; t := G.24; u := G.25; v := G.26; w := G.27; x := G.28;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(3830708578144690194139606816296013361154774185710586250380952908562346969676435609010732611268219145178923325961080588760612799936401775751460572424575395701606010443348142090700723760012327058434541312349684296970611443265575357474144828661882505025214438543555495409748085692438741629748750467195965220399090783231562450217803813041296088736366145661053686530705237979706863698613806869915759064283387405653330097985986182104058816165542981982265817128091432785421915977913137977239015826776411394622214743337542415442235360830169632697021599084248875561754457771727477356708008763795394811670086306055886500229531302381452136113617150527373522816144299806585373427336627949770292699763170228320199757332809868811004023488669761532025070349728499520942031192233048664661592421389608416039193093215752142431389752980497785861374910422712055301973012831895968333939188443508679203445443146978629083429321870425567120217160052911940484602996311629339041208153039456516000078085570021882686407326715391064926001142215900184259993594526910263622155522504608145748211466609753857010600641905428918700769256684373669903957345466017191640113040747724460988953775997709959521193145195294659689245381722420358136717364783036197474631921900050491935446874427207119438731656939274899075803997680303738927048183955798430553072163486576291379631900894571071327027714859884545353455784835116579059612201933558587771595272752415974112297526997803812280119211246528672561018924933795242925966037188665545694092924635772762578360169251847667133530068176558261648897503702016054420370814868640817395871592396676715128292549582286083295141221191759334129964779795079683291702747487794083864346423789385719105951665531442664446492958402029339325080069754704108928372392149120506368117154855323773200649672645046216066697040177681666472184042734182509829843941016041108944085229566171021135930085776442824158928818048399096695318865896894967544593448191421577607339346400001257494599821188147361348056805299322451080334819251559692969248514446497443058155032869878774112743140886673407825231623494623330870915711736594374500627236387821276073895589652506764169713838828821345157869104516193042879570198767678931180550390930533026417675990948462712503049302747775263345784624713651850461229562156380923165791131518844773785238949707888450185527311661265865382367688829982866992233599072419591019322562721245465859866797164201091803544818149920269999202235897044322854534224588022721109777797405422769287537130925221733584563109411792514793909612536312728787314880132551408253598177287812770663170712394475956580840670951537642026701357613747439624211523567235082884399836804615229693954182379322338070647664593893864128692838383792660485091248445903534120589728103090480555558345615980992196447031667940750975306213482178949589183950088024729084972553020395959136364065126045565800290668853837884474931785497700000612829791565447168,38843449344)'); a = G.1; b = G.2; c = G.3; d = G.4; e = G.5; f = G.7; g = G.9; h = G.11; i = G.13; j = G.14; k = G.15; l = G.16; m = G.17; n = G.18; o = G.19; p = G.20; q = G.21; r = G.22; s = G.23; t = G.24; u = G.25; v = G.26; w = G.27; x = G.28;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(3830708578144690194139606816296013361154774185710586250380952908562346969676435609010732611268219145178923325961080588760612799936401775751460572424575395701606010443348142090700723760012327058434541312349684296970611443265575357474144828661882505025214438543555495409748085692438741629748750467195965220399090783231562450217803813041296088736366145661053686530705237979706863698613806869915759064283387405653330097985986182104058816165542981982265817128091432785421915977913137977239015826776411394622214743337542415442235360830169632697021599084248875561754457771727477356708008763795394811670086306055886500229531302381452136113617150527373522816144299806585373427336627949770292699763170228320199757332809868811004023488669761532025070349728499520942031192233048664661592421389608416039193093215752142431389752980497785861374910422712055301973012831895968333939188443508679203445443146978629083429321870425567120217160052911940484602996311629339041208153039456516000078085570021882686407326715391064926001142215900184259993594526910263622155522504608145748211466609753857010600641905428918700769256684373669903957345466017191640113040747724460988953775997709959521193145195294659689245381722420358136717364783036197474631921900050491935446874427207119438731656939274899075803997680303738927048183955798430553072163486576291379631900894571071327027714859884545353455784835116579059612201933558587771595272752415974112297526997803812280119211246528672561018924933795242925966037188665545694092924635772762578360169251847667133530068176558261648897503702016054420370814868640817395871592396676715128292549582286083295141221191759334129964779795079683291702747487794083864346423789385719105951665531442664446492958402029339325080069754704108928372392149120506368117154855323773200649672645046216066697040177681666472184042734182509829843941016041108944085229566171021135930085776442824158928818048399096695318865896894967544593448191421577607339346400001257494599821188147361348056805299322451080334819251559692969248514446497443058155032869878774112743140886673407825231623494623330870915711736594374500627236387821276073895589652506764169713838828821345157869104516193042879570198767678931180550390930533026417675990948462712503049302747775263345784624713651850461229562156380923165791131518844773785238949707888450185527311661265865382367688829982866992233599072419591019322562721245465859866797164201091803544818149920269999202235897044322854534224588022721109777797405422769287537130925221733584563109411792514793909612536312728787314880132551408253598177287812770663170712394475956580840670951537642026701357613747439624211523567235082884399836804615229693954182379322338070647664593893864128692838383792660485091248445903534120589728103090480555558345615980992196447031667940750975306213482178949589183950088024729084972553020395959136364065126045565800290668853837884474931785497700000612829791565447168,38843449344)'); a = G.1; b = G.2; c = G.3; d = G.4; e = G.5; f = G.7; g = G.9; h = G.11; i = G.13; j = G.14; k = G.15; l = G.16; m = G.17; n = G.18; o = G.19; p = G.20; q = G.21; r = G.22; s = G.23; t = G.24; u = G.25; v = G.26; w = G.27; x = G.28;
 
Permutation group:Degree $42$ $\langle(1,29,13,34,12,38,9,41,7,32,5,35,4,39)(2,30,14,33,11,37,10,42,8,31,6,36,3,40) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 42 | (1,29,13,34,12,38,9,41,7,32,5,35,4,39)(2,30,14,33,11,37,10,42,8,31,6,36,3,40)(15,28,26,23,22,19,18,16,27,25,24,21,20,17), (1,18)(2,17)(3,15,5,27,10,24,4,16,6,28,9,23)(7,25,13,20,11,22)(8,26,14,19,12,21)(29,33,36)(30,34,35)(31,42,40)(32,41,39)(37,38), (1,40,17,10,36,16,4,32,27,11,42,26,5,38,24,13,34,21,7,30,20)(2,39,18,9,35,15,3,31,28,12,41,25,6,37,23,14,33,22,8,29,19) >;
 
Copy content gap:G := Group( (1,29,13,34,12,38,9,41,7,32,5,35,4,39)(2,30,14,33,11,37,10,42,8,31,6,36,3,40)(15,28,26,23,22,19,18,16,27,25,24,21,20,17), (1,18)(2,17)(3,15,5,27,10,24,4,16,6,28,9,23)(7,25,13,20,11,22)(8,26,14,19,12,21)(29,33,36)(30,34,35)(31,42,40)(32,41,39)(37,38), (1,40,17,10,36,16,4,32,27,11,42,26,5,38,24,13,34,21,7,30,20)(2,39,18,9,35,15,3,31,28,12,41,25,6,37,23,14,33,22,8,29,19) );
 
Copy content sage:G = PermutationGroup(['(1,29,13,34,12,38,9,41,7,32,5,35,4,39)(2,30,14,33,11,37,10,42,8,31,6,36,3,40)(15,28,26,23,22,19,18,16,27,25,24,21,20,17)', '(1,18)(2,17)(3,15,5,27,10,24,4,16,6,28,9,23)(7,25,13,20,11,22)(8,26,14,19,12,21)(29,33,36)(30,34,35)(31,42,40)(32,41,39)(37,38)', '(1,40,17,10,36,16,4,32,27,11,42,26,5,38,24,13,34,21,7,30,20)(2,39,18,9,35,15,3,31,28,12,41,25,6,37,23,14,33,22,8,29,19)'])
 
Transitive group: 42T7164 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not computed
Possibly split product: $C_2^{21}$ . $(C_7^3:C_3^2:S_3)$ $C_2^{19}$ . $(C_7^3:C_3^2:S_4)$ $(C_2^{18}.C_7^3.C_6^2)$ . $D_6$ $C_2^{20}$ . $(C_7^3:C_3^2:D_6)$ all 28

Elements of the group are displayed as permutations of degree 42.

Homology

Abelianization: $C_{2}^{2} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{3}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 39 normal subgroups (23 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_2$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $C_2^{18}.C_7^3.C_6^2.C_3$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 3 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $2880 \times 2880$ character table is not available for this group.

Rational character table

The $1640 \times 1640$ rational character table is not available for this group.