| Presentation: |
${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r \mid g^{6}= \!\cdots\! \rangle}$
|
magma:G := PCGroup([29, 2, 2, 2, 2, 3, 2, 3, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 58, 880151988386, 16599551212490, 5499481167127, 6651751296732, 23021750173427, 16898293552752, 9701020367013, 322, 10595792974084, 17283050259313, 193135031782, 166873080, 29418985513517, 4063973037502, 14563916170119, 5415427964720, 1604742577555, 498, 30137575263270, 9727328951459, 1279752780328, 5874846007641, 2416004216, 1828165806, 5050138234119, 1477234621092, 13392339810689, 8529214657054, 1169167371, 1117250362856, 706911769165, 237311389650, 17714283460424, 3992803369237, 15505934326770, 5858767050791, 306305026, 1431651193929, 452394887366, 879814246, 762, 100518699818889, 216000010998, 23875824690787, 6519793885296, 338569325, 23599860274, 93637612983, 1055360672, 5032350, 105584180895082, 14717285839911, 28008814521668, 39325304401, 3204162, 1944275192795, 3751874662, 535814943, 6928922, 18454, 938, 66661782257675, 40148573405224, 126253375557, 21042229346, 1672857225372, 2045772473, 1169012950, 8595, 244424988300, 4107033994793, 2953949057350, 864075051, 423975836, 1299515960029, 116407230, 8163802, 6436794, 11612, 1114, 8418829, 67166795759658, 34909058322503, 37884772, 738751233, 1620251652254, 526363, 175637, 4209682, 10047, 433711843214, 74928601946923, 599458692672, 12665278817381, 16912930, 40487105769, 1338266736548, 5517237457, 14939886, 172535, 78604, 13412, 1290, 224450445327, 41411107160108, 1010027003977, 1039122534, 3608195, 84168917152, 9621751, 16980, 67121, 11499, 2151091676176, 160227808173, 36112466131274, 14380121363899, 29844327012, 9942465257, 1200419271001, 397519495680, 368661704, 138328189, 15212, 1466, 9546937361, 273548980270, 147296957835, 19222076418152, 5260782978, 1593961042943, 533954685532, 12951, 1437663769362, 1382161371887, 26468718754972, 15993486715785, 874053638, 3959365018195, 1316221747392, 444246262781, 6108456778, 101610386343, 635118, 33484, 1642, 337931274259, 2829010821168, 48139945971917, 21357871706986, 94711815, 2162673812324, 1771243718593, 593305534302, 1545371, 877240, 585007, 49145, 67621402352468, 622147608481, 35670315289470, 23228828891, 75966825, 63806206658, 3713925823, 126653194332, 63220046681, 9603138, 1688632, 406107, 267284, 68170, 1818, 216650792337429, 926572483634, 46756190587471, 45008644140, 59533222, 6429639147, 1250217368, 476264701, 92357, 230370813346774, 682151817507, 354220894016, 1915581421, 40601938991, 60640409248, 4721095593, 7562051390, 123101168107, 11238044, 2449710, 504767, 312700, 84615, 1994, 124233321480215, 1010027003956, 505792843857, 902126, 21074701992, 150533, 2727696610, 601831, 21107174424, 409154457653, 102288614482, 14612659369, 21952814598, 3658802627, 11275630, 52804, 9362, 2191768989721, 281429046, 23452499, 820646940784, 11726378, 288746146049, 77885473822, 977731, 163469, 27807, 181804860702746, 11446583095, 5772000468, 16191995406449, 294282891, 213052571336, 307742603010, 84826486943, 37039580, 3214038, 1029526, 236851433441307, 29465912, 98348608597, 19738065650802, 9547989868, 1632526286025, 941055252710, 225034951939, 104334386976, 1579135, 512225, 3819135772, 12564782265, 209555455190, 35850933507571, 20102779757, 1512848607178, 1021278751719, 144080819972, 67802738977, 14169718, 1272200, 818118]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r := Explode([G.1, G.3, G.4, G.6, G.8, G.9, G.11, G.13, G.15, G.17, G.19, G.21, G.23, G.25, G.26, G.27, G.28, G.29]); AssignNames(~G, ["a", "a2", "b", "c", "c2", "d", "d2", "e", "f", "f2", "g", "g2", "h", "h2", "i", "i2", "j", "j2", "k", "k2", "l", "l2", "m", "m2", "n", "o", "p", "q", "r"]);
gap:G := PcGroupCode(38728701154103484213954830283735344345303770116926117983394810882517224743225047985916412402075696562859793984138327756867136616203281510900061302097641451307077189926158543321574581085475182911338591708054202479502342209146494301221358802610989358343408484007144784259066355846245735372869474440701443118232858388463026786746482918867313707161000037550112464574812780232392509259363467495930675778740873817453472018602832333163686372237875280478090024069981260787632312794772087378912317949160436682961193866850712048416134237962506588071497102787485503266839277167897502013625023883534109544994294174690666829786469438521709969909171393279795431549997380294251234529392343511916837845745817333584391982834476126991634940337691277221437200909824644075823694044495345900699102679459860205683669886285676033361109221248998427163729120188913013423896410657910780167407940846174175231408322260229626595333775161153047922573184826705864626126425598010370880710238062966610261676259223313816108436474448847448723031885371482576935213859711297402259233745830043108622055929545374684114801827557575664966430866848594799745271558935208418961422021150612749208534697282548418284009306725422764108585705954624917753296086594807052128603879138313182504690155741356508844044286588384677535814764483425247994199891020134716431924222499091708801242350626997487696422237621476471993435355768366521321702991262079105375802971832636702849459260758740987322191310678181927881235014397156163429740826130887126542589946730956448798510491446419016341831693584878786641628763684675628687541695219606912638081931180361463304414570890744528396082107671892134065990435017867941347550302682131280126126706062030698640692770439896942436744957264856496436793754155204302118405309712617095715282127069170807617078060780071809815847373522508992294210726261006910933625998556388000595691271008270826388318580643224217530753988775038134071280913278912076929213205533054167409790255763350562201033743016396270576361718462843521871987597302875960224283014138192050067353449720917684399258671183161029256224750196143380813240958926130346795533521394279097293974910797029107535806685132307945544390707838323140791709830448973673042688450817465368448640675275044384756664331989167700289960570530204254534925728213203301500823002614667025758017716597620666977852600384802466171435249990443145340362233289299750172768997508191361703803810008002781925490986694300528059030313896558781414882486265297718534129195036795476286237495369748499864177195035400276049889046494060810955378203735822944219876672435549537426491679670028977561159453279606344056950817258402935374662259507175991197957863168172449337739518186056664636065797254893818397732987688644127446525866095556132138792079094205076799270464408290912981398937868263569807347335393320329503749690051680307200250919063608307960099471502070502188750917914040083045442598841185675953753222702943412259539454999424075169588733537891951318372320394068751017630902514472021158520591566164231897927930526104794680033850808303524747477905354112218118092743626990693089219216951524049755863440727372105320671935,352638738432); a := G.1; b := G.3; c := G.4; d := G.6; e := G.8; f := G.9; g := G.11; h := G.13; i := G.15; j := G.17; k := G.19; l := G.21; m := G.23; n := G.25; o := G.26; p := G.27; q := G.28; r := G.29;
sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(38728701154103484213954830283735344345303770116926117983394810882517224743225047985916412402075696562859793984138327756867136616203281510900061302097641451307077189926158543321574581085475182911338591708054202479502342209146494301221358802610989358343408484007144784259066355846245735372869474440701443118232858388463026786746482918867313707161000037550112464574812780232392509259363467495930675778740873817453472018602832333163686372237875280478090024069981260787632312794772087378912317949160436682961193866850712048416134237962506588071497102787485503266839277167897502013625023883534109544994294174690666829786469438521709969909171393279795431549997380294251234529392343511916837845745817333584391982834476126991634940337691277221437200909824644075823694044495345900699102679459860205683669886285676033361109221248998427163729120188913013423896410657910780167407940846174175231408322260229626595333775161153047922573184826705864626126425598010370880710238062966610261676259223313816108436474448847448723031885371482576935213859711297402259233745830043108622055929545374684114801827557575664966430866848594799745271558935208418961422021150612749208534697282548418284009306725422764108585705954624917753296086594807052128603879138313182504690155741356508844044286588384677535814764483425247994199891020134716431924222499091708801242350626997487696422237621476471993435355768366521321702991262079105375802971832636702849459260758740987322191310678181927881235014397156163429740826130887126542589946730956448798510491446419016341831693584878786641628763684675628687541695219606912638081931180361463304414570890744528396082107671892134065990435017867941347550302682131280126126706062030698640692770439896942436744957264856496436793754155204302118405309712617095715282127069170807617078060780071809815847373522508992294210726261006910933625998556388000595691271008270826388318580643224217530753988775038134071280913278912076929213205533054167409790255763350562201033743016396270576361718462843521871987597302875960224283014138192050067353449720917684399258671183161029256224750196143380813240958926130346795533521394279097293974910797029107535806685132307945544390707838323140791709830448973673042688450817465368448640675275044384756664331989167700289960570530204254534925728213203301500823002614667025758017716597620666977852600384802466171435249990443145340362233289299750172768997508191361703803810008002781925490986694300528059030313896558781414882486265297718534129195036795476286237495369748499864177195035400276049889046494060810955378203735822944219876672435549537426491679670028977561159453279606344056950817258402935374662259507175991197957863168172449337739518186056664636065797254893818397732987688644127446525866095556132138792079094205076799270464408290912981398937868263569807347335393320329503749690051680307200250919063608307960099471502070502188750917914040083045442598841185675953753222702943412259539454999424075169588733537891951318372320394068751017630902514472021158520591566164231897927930526104794680033850808303524747477905354112218118092743626990693089219216951524049755863440727372105320671935,352638738432)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.8; f = G.9; g = G.11; h = G.13; i = G.15; j = G.17; k = G.19; l = G.21; m = G.23; n = G.25; o = G.26; p = G.27; q = G.28; r = G.29;
sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(38728701154103484213954830283735344345303770116926117983394810882517224743225047985916412402075696562859793984138327756867136616203281510900061302097641451307077189926158543321574581085475182911338591708054202479502342209146494301221358802610989358343408484007144784259066355846245735372869474440701443118232858388463026786746482918867313707161000037550112464574812780232392509259363467495930675778740873817453472018602832333163686372237875280478090024069981260787632312794772087378912317949160436682961193866850712048416134237962506588071497102787485503266839277167897502013625023883534109544994294174690666829786469438521709969909171393279795431549997380294251234529392343511916837845745817333584391982834476126991634940337691277221437200909824644075823694044495345900699102679459860205683669886285676033361109221248998427163729120188913013423896410657910780167407940846174175231408322260229626595333775161153047922573184826705864626126425598010370880710238062966610261676259223313816108436474448847448723031885371482576935213859711297402259233745830043108622055929545374684114801827557575664966430866848594799745271558935208418961422021150612749208534697282548418284009306725422764108585705954624917753296086594807052128603879138313182504690155741356508844044286588384677535814764483425247994199891020134716431924222499091708801242350626997487696422237621476471993435355768366521321702991262079105375802971832636702849459260758740987322191310678181927881235014397156163429740826130887126542589946730956448798510491446419016341831693584878786641628763684675628687541695219606912638081931180361463304414570890744528396082107671892134065990435017867941347550302682131280126126706062030698640692770439896942436744957264856496436793754155204302118405309712617095715282127069170807617078060780071809815847373522508992294210726261006910933625998556388000595691271008270826388318580643224217530753988775038134071280913278912076929213205533054167409790255763350562201033743016396270576361718462843521871987597302875960224283014138192050067353449720917684399258671183161029256224750196143380813240958926130346795533521394279097293974910797029107535806685132307945544390707838323140791709830448973673042688450817465368448640675275044384756664331989167700289960570530204254534925728213203301500823002614667025758017716597620666977852600384802466171435249990443145340362233289299750172768997508191361703803810008002781925490986694300528059030313896558781414882486265297718534129195036795476286237495369748499864177195035400276049889046494060810955378203735822944219876672435549537426491679670028977561159453279606344056950817258402935374662259507175991197957863168172449337739518186056664636065797254893818397732987688644127446525866095556132138792079094205076799270464408290912981398937868263569807347335393320329503749690051680307200250919063608307960099471502070502188750917914040083045442598841185675953753222702943412259539454999424075169588733537891951318372320394068751017630902514472021158520591566164231897927930526104794680033850808303524747477905354112218118092743626990693089219216951524049755863440727372105320671935,352638738432)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.8; f = G.9; g = G.11; h = G.13; i = G.15; j = G.17; k = G.19; l = G.21; m = G.23; n = G.25; o = G.26; p = G.27; q = G.28; r = G.29;
|
| Permutation group: | Degree $36$
$\langle(1,26)(2,25)(3,27)(4,28,5,30)(6,29)(7,20,31,9,19,33)(8,21,32)(10,34,23,12,35,22) \!\cdots\! \rangle$
|
magma:G := PermutationGroup< 36 | (1,26)(2,25)(3,27)(4,28,5,30)(6,29)(7,20,31,9,19,33)(8,21,32)(10,34,23,12,35,22)(11,36,24)(14,15)(16,17,18), (1,36,31,16,15,23,7,30,2,34,33,18,13,22,9,29,3,35,32,17,14,24,8,28)(4,27,11,20)(5,26,10,21)(6,25,12,19) >;
gap:G := Group( (1,26)(2,25)(3,27)(4,28,5,30)(6,29)(7,20,31,9,19,33)(8,21,32)(10,34,23,12,35,22)(11,36,24)(14,15)(16,17,18), (1,36,31,16,15,23,7,30,2,34,33,18,13,22,9,29,3,35,32,17,14,24,8,28)(4,27,11,20)(5,26,10,21)(6,25,12,19) );
sage:G = PermutationGroup(['(1,26)(2,25)(3,27)(4,28,5,30)(6,29)(7,20,31,9,19,33)(8,21,32)(10,34,23,12,35,22)(11,36,24)(14,15)(16,17,18)', '(1,36,31,16,15,23,7,30,2,34,33,18,13,22,9,29,3,35,32,17,14,24,8,28)(4,27,11,20)(5,26,10,21)(6,25,12,19)'])
|
| Transitive group: |
36T118194 |
|
|
|
more information |
| Direct product: |
not computed |
| Semidirect product: |
not computed |
| Trans. wreath product: |
not isomorphic to a non-trivial transitive wreath product |
| Possibly split product: |
$C_3^{12}$ . $(A_4^2\wr C_2.C_2^2.C_4)$ |
$(C_3^{12}.C_2^8.C_3^4.\OD_{16})$ . $C_2$ (2) |
$(C_3^{11}.D_6.C_2^6)$ . $(C_3:S_3^3.C_4)$ |
$(C_3^{12}.C_2^4.C_2^4.C_3.S_3^3)$ . $C_4$ (2) |
all 10 |
Elements of the group are displayed as permutations of degree 36.
The $4112 \times 4112$ character table is not available for this group.
The $3636 \times 3636$ rational character table is not available for this group.