Properties

Label 352638738432.em
Order \( 2^{13} \cdot 3^{16} \)
Exponent \( 2^{4} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{16} \cdot 3^{16} \)
$\card{\mathrm{Out}(G)}$ \( 2^{3} \)
Perm deg. $36$
Trans deg. $36$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,26)(2,25)(3,27)(4,28,5,30)(6,29)(7,20,31,9,19,33)(8,21,32)(10,34,23,12,35,22)(11,36,24)(14,15)(16,17,18), (1,36,31,16,15,23,7,30,2,34,33,18,13,22,9,29,3,35,32,17,14,24,8,28)(4,27,11,20)(5,26,10,21)(6,25,12,19) >;
 
Copy content gap:G := Group( (1,26)(2,25)(3,27)(4,28,5,30)(6,29)(7,20,31,9,19,33)(8,21,32)(10,34,23,12,35,22)(11,36,24)(14,15)(16,17,18), (1,36,31,16,15,23,7,30,2,34,33,18,13,22,9,29,3,35,32,17,14,24,8,28)(4,27,11,20)(5,26,10,21)(6,25,12,19) );
 
Copy content sage:G = PermutationGroup(['(1,26)(2,25)(3,27)(4,28,5,30)(6,29)(7,20,31,9,19,33)(8,21,32)(10,34,23,12,35,22)(11,36,24)(14,15)(16,17,18)', '(1,36,31,16,15,23,7,30,2,34,33,18,13,22,9,29,3,35,32,17,14,24,8,28)(4,27,11,20)(5,26,10,21)(6,25,12,19)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(38728701154103484213954830283735344345303770116926117983394810882517224743225047985916412402075696562859793984138327756867136616203281510900061302097641451307077189926158543321574581085475182911338591708054202479502342209146494301221358802610989358343408484007144784259066355846245735372869474440701443118232858388463026786746482918867313707161000037550112464574812780232392509259363467495930675778740873817453472018602832333163686372237875280478090024069981260787632312794772087378912317949160436682961193866850712048416134237962506588071497102787485503266839277167897502013625023883534109544994294174690666829786469438521709969909171393279795431549997380294251234529392343511916837845745817333584391982834476126991634940337691277221437200909824644075823694044495345900699102679459860205683669886285676033361109221248998427163729120188913013423896410657910780167407940846174175231408322260229626595333775161153047922573184826705864626126425598010370880710238062966610261676259223313816108436474448847448723031885371482576935213859711297402259233745830043108622055929545374684114801827557575664966430866848594799745271558935208418961422021150612749208534697282548418284009306725422764108585705954624917753296086594807052128603879138313182504690155741356508844044286588384677535814764483425247994199891020134716431924222499091708801242350626997487696422237621476471993435355768366521321702991262079105375802971832636702849459260758740987322191310678181927881235014397156163429740826130887126542589946730956448798510491446419016341831693584878786641628763684675628687541695219606912638081931180361463304414570890744528396082107671892134065990435017867941347550302682131280126126706062030698640692770439896942436744957264856496436793754155204302118405309712617095715282127069170807617078060780071809815847373522508992294210726261006910933625998556388000595691271008270826388318580643224217530753988775038134071280913278912076929213205533054167409790255763350562201033743016396270576361718462843521871987597302875960224283014138192050067353449720917684399258671183161029256224750196143380813240958926130346795533521394279097293974910797029107535806685132307945544390707838323140791709830448973673042688450817465368448640675275044384756664331989167700289960570530204254534925728213203301500823002614667025758017716597620666977852600384802466171435249990443145340362233289299750172768997508191361703803810008002781925490986694300528059030313896558781414882486265297718534129195036795476286237495369748499864177195035400276049889046494060810955378203735822944219876672435549537426491679670028977561159453279606344056950817258402935374662259507175991197957863168172449337739518186056664636065797254893818397732987688644127446525866095556132138792079094205076799270464408290912981398937868263569807347335393320329503749690051680307200250919063608307960099471502070502188750917914040083045442598841185675953753222702943412259539454999424075169588733537891951318372320394068751017630902514472021158520591566164231897927930526104794680033850808303524747477905354112218118092743626990693089219216951524049755863440727372105320671935,352638738432)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.8; f = G.9; g = G.11; h = G.13; i = G.15; j = G.17; k = G.19; l = G.21; m = G.23; n = G.25; o = G.26; p = G.27; q = G.28; r = G.29;
 

Group information

Description:$C_3^{12}.C_2^8.C_3^4.\OD_{16}.C_2$
Order: \(352638738432\)\(\medspace = 2^{13} \cdot 3^{16} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(2821109907456\)\(\medspace = 2^{16} \cdot 3^{16} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 13, $C_3$ x 16
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$5$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 9 12 16 18 24 36
Elements 1 16764111 96059600 1610133552 18461734704 23264361216 3390724800 67392165888 88159684608 31068277056 97955205120 21223627776 352638738432
Conjugacy classes   1 14 210 29 1432 8 504 834 4 894 30 152 4112
Divisions 1 14 205 29 1412 6 369 730 2 734 12 122 3636
Autjugacy classes 1 13 135 21 825 3 167 388 1 319 6 52 1931

Minimal presentations

Permutation degree:$36$
Transitive degree:$36$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r \mid g^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([29, 2, 2, 2, 2, 3, 2, 3, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 58, 880151988386, 16599551212490, 5499481167127, 6651751296732, 23021750173427, 16898293552752, 9701020367013, 322, 10595792974084, 17283050259313, 193135031782, 166873080, 29418985513517, 4063973037502, 14563916170119, 5415427964720, 1604742577555, 498, 30137575263270, 9727328951459, 1279752780328, 5874846007641, 2416004216, 1828165806, 5050138234119, 1477234621092, 13392339810689, 8529214657054, 1169167371, 1117250362856, 706911769165, 237311389650, 17714283460424, 3992803369237, 15505934326770, 5858767050791, 306305026, 1431651193929, 452394887366, 879814246, 762, 100518699818889, 216000010998, 23875824690787, 6519793885296, 338569325, 23599860274, 93637612983, 1055360672, 5032350, 105584180895082, 14717285839911, 28008814521668, 39325304401, 3204162, 1944275192795, 3751874662, 535814943, 6928922, 18454, 938, 66661782257675, 40148573405224, 126253375557, 21042229346, 1672857225372, 2045772473, 1169012950, 8595, 244424988300, 4107033994793, 2953949057350, 864075051, 423975836, 1299515960029, 116407230, 8163802, 6436794, 11612, 1114, 8418829, 67166795759658, 34909058322503, 37884772, 738751233, 1620251652254, 526363, 175637, 4209682, 10047, 433711843214, 74928601946923, 599458692672, 12665278817381, 16912930, 40487105769, 1338266736548, 5517237457, 14939886, 172535, 78604, 13412, 1290, 224450445327, 41411107160108, 1010027003977, 1039122534, 3608195, 84168917152, 9621751, 16980, 67121, 11499, 2151091676176, 160227808173, 36112466131274, 14380121363899, 29844327012, 9942465257, 1200419271001, 397519495680, 368661704, 138328189, 15212, 1466, 9546937361, 273548980270, 147296957835, 19222076418152, 5260782978, 1593961042943, 533954685532, 12951, 1437663769362, 1382161371887, 26468718754972, 15993486715785, 874053638, 3959365018195, 1316221747392, 444246262781, 6108456778, 101610386343, 635118, 33484, 1642, 337931274259, 2829010821168, 48139945971917, 21357871706986, 94711815, 2162673812324, 1771243718593, 593305534302, 1545371, 877240, 585007, 49145, 67621402352468, 622147608481, 35670315289470, 23228828891, 75966825, 63806206658, 3713925823, 126653194332, 63220046681, 9603138, 1688632, 406107, 267284, 68170, 1818, 216650792337429, 926572483634, 46756190587471, 45008644140, 59533222, 6429639147, 1250217368, 476264701, 92357, 230370813346774, 682151817507, 354220894016, 1915581421, 40601938991, 60640409248, 4721095593, 7562051390, 123101168107, 11238044, 2449710, 504767, 312700, 84615, 1994, 124233321480215, 1010027003956, 505792843857, 902126, 21074701992, 150533, 2727696610, 601831, 21107174424, 409154457653, 102288614482, 14612659369, 21952814598, 3658802627, 11275630, 52804, 9362, 2191768989721, 281429046, 23452499, 820646940784, 11726378, 288746146049, 77885473822, 977731, 163469, 27807, 181804860702746, 11446583095, 5772000468, 16191995406449, 294282891, 213052571336, 307742603010, 84826486943, 37039580, 3214038, 1029526, 236851433441307, 29465912, 98348608597, 19738065650802, 9547989868, 1632526286025, 941055252710, 225034951939, 104334386976, 1579135, 512225, 3819135772, 12564782265, 209555455190, 35850933507571, 20102779757, 1512848607178, 1021278751719, 144080819972, 67802738977, 14169718, 1272200, 818118]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r := Explode([G.1, G.3, G.4, G.6, G.8, G.9, G.11, G.13, G.15, G.17, G.19, G.21, G.23, G.25, G.26, G.27, G.28, G.29]); AssignNames(~G, ["a", "a2", "b", "c", "c2", "d", "d2", "e", "f", "f2", "g", "g2", "h", "h2", "i", "i2", "j", "j2", "k", "k2", "l", "l2", "m", "m2", "n", "o", "p", "q", "r"]);
 
Copy content gap:G := PcGroupCode(38728701154103484213954830283735344345303770116926117983394810882517224743225047985916412402075696562859793984138327756867136616203281510900061302097641451307077189926158543321574581085475182911338591708054202479502342209146494301221358802610989358343408484007144784259066355846245735372869474440701443118232858388463026786746482918867313707161000037550112464574812780232392509259363467495930675778740873817453472018602832333163686372237875280478090024069981260787632312794772087378912317949160436682961193866850712048416134237962506588071497102787485503266839277167897502013625023883534109544994294174690666829786469438521709969909171393279795431549997380294251234529392343511916837845745817333584391982834476126991634940337691277221437200909824644075823694044495345900699102679459860205683669886285676033361109221248998427163729120188913013423896410657910780167407940846174175231408322260229626595333775161153047922573184826705864626126425598010370880710238062966610261676259223313816108436474448847448723031885371482576935213859711297402259233745830043108622055929545374684114801827557575664966430866848594799745271558935208418961422021150612749208534697282548418284009306725422764108585705954624917753296086594807052128603879138313182504690155741356508844044286588384677535814764483425247994199891020134716431924222499091708801242350626997487696422237621476471993435355768366521321702991262079105375802971832636702849459260758740987322191310678181927881235014397156163429740826130887126542589946730956448798510491446419016341831693584878786641628763684675628687541695219606912638081931180361463304414570890744528396082107671892134065990435017867941347550302682131280126126706062030698640692770439896942436744957264856496436793754155204302118405309712617095715282127069170807617078060780071809815847373522508992294210726261006910933625998556388000595691271008270826388318580643224217530753988775038134071280913278912076929213205533054167409790255763350562201033743016396270576361718462843521871987597302875960224283014138192050067353449720917684399258671183161029256224750196143380813240958926130346795533521394279097293974910797029107535806685132307945544390707838323140791709830448973673042688450817465368448640675275044384756664331989167700289960570530204254534925728213203301500823002614667025758017716597620666977852600384802466171435249990443145340362233289299750172768997508191361703803810008002781925490986694300528059030313896558781414882486265297718534129195036795476286237495369748499864177195035400276049889046494060810955378203735822944219876672435549537426491679670028977561159453279606344056950817258402935374662259507175991197957863168172449337739518186056664636065797254893818397732987688644127446525866095556132138792079094205076799270464408290912981398937868263569807347335393320329503749690051680307200250919063608307960099471502070502188750917914040083045442598841185675953753222702943412259539454999424075169588733537891951318372320394068751017630902514472021158520591566164231897927930526104794680033850808303524747477905354112218118092743626990693089219216951524049755863440727372105320671935,352638738432); a := G.1; b := G.3; c := G.4; d := G.6; e := G.8; f := G.9; g := G.11; h := G.13; i := G.15; j := G.17; k := G.19; l := G.21; m := G.23; n := G.25; o := G.26; p := G.27; q := G.28; r := G.29;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(38728701154103484213954830283735344345303770116926117983394810882517224743225047985916412402075696562859793984138327756867136616203281510900061302097641451307077189926158543321574581085475182911338591708054202479502342209146494301221358802610989358343408484007144784259066355846245735372869474440701443118232858388463026786746482918867313707161000037550112464574812780232392509259363467495930675778740873817453472018602832333163686372237875280478090024069981260787632312794772087378912317949160436682961193866850712048416134237962506588071497102787485503266839277167897502013625023883534109544994294174690666829786469438521709969909171393279795431549997380294251234529392343511916837845745817333584391982834476126991634940337691277221437200909824644075823694044495345900699102679459860205683669886285676033361109221248998427163729120188913013423896410657910780167407940846174175231408322260229626595333775161153047922573184826705864626126425598010370880710238062966610261676259223313816108436474448847448723031885371482576935213859711297402259233745830043108622055929545374684114801827557575664966430866848594799745271558935208418961422021150612749208534697282548418284009306725422764108585705954624917753296086594807052128603879138313182504690155741356508844044286588384677535814764483425247994199891020134716431924222499091708801242350626997487696422237621476471993435355768366521321702991262079105375802971832636702849459260758740987322191310678181927881235014397156163429740826130887126542589946730956448798510491446419016341831693584878786641628763684675628687541695219606912638081931180361463304414570890744528396082107671892134065990435017867941347550302682131280126126706062030698640692770439896942436744957264856496436793754155204302118405309712617095715282127069170807617078060780071809815847373522508992294210726261006910933625998556388000595691271008270826388318580643224217530753988775038134071280913278912076929213205533054167409790255763350562201033743016396270576361718462843521871987597302875960224283014138192050067353449720917684399258671183161029256224750196143380813240958926130346795533521394279097293974910797029107535806685132307945544390707838323140791709830448973673042688450817465368448640675275044384756664331989167700289960570530204254534925728213203301500823002614667025758017716597620666977852600384802466171435249990443145340362233289299750172768997508191361703803810008002781925490986694300528059030313896558781414882486265297718534129195036795476286237495369748499864177195035400276049889046494060810955378203735822944219876672435549537426491679670028977561159453279606344056950817258402935374662259507175991197957863168172449337739518186056664636065797254893818397732987688644127446525866095556132138792079094205076799270464408290912981398937868263569807347335393320329503749690051680307200250919063608307960099471502070502188750917914040083045442598841185675953753222702943412259539454999424075169588733537891951318372320394068751017630902514472021158520591566164231897927930526104794680033850808303524747477905354112218118092743626990693089219216951524049755863440727372105320671935,352638738432)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.8; f = G.9; g = G.11; h = G.13; i = G.15; j = G.17; k = G.19; l = G.21; m = G.23; n = G.25; o = G.26; p = G.27; q = G.28; r = G.29;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(38728701154103484213954830283735344345303770116926117983394810882517224743225047985916412402075696562859793984138327756867136616203281510900061302097641451307077189926158543321574581085475182911338591708054202479502342209146494301221358802610989358343408484007144784259066355846245735372869474440701443118232858388463026786746482918867313707161000037550112464574812780232392509259363467495930675778740873817453472018602832333163686372237875280478090024069981260787632312794772087378912317949160436682961193866850712048416134237962506588071497102787485503266839277167897502013625023883534109544994294174690666829786469438521709969909171393279795431549997380294251234529392343511916837845745817333584391982834476126991634940337691277221437200909824644075823694044495345900699102679459860205683669886285676033361109221248998427163729120188913013423896410657910780167407940846174175231408322260229626595333775161153047922573184826705864626126425598010370880710238062966610261676259223313816108436474448847448723031885371482576935213859711297402259233745830043108622055929545374684114801827557575664966430866848594799745271558935208418961422021150612749208534697282548418284009306725422764108585705954624917753296086594807052128603879138313182504690155741356508844044286588384677535814764483425247994199891020134716431924222499091708801242350626997487696422237621476471993435355768366521321702991262079105375802971832636702849459260758740987322191310678181927881235014397156163429740826130887126542589946730956448798510491446419016341831693584878786641628763684675628687541695219606912638081931180361463304414570890744528396082107671892134065990435017867941347550302682131280126126706062030698640692770439896942436744957264856496436793754155204302118405309712617095715282127069170807617078060780071809815847373522508992294210726261006910933625998556388000595691271008270826388318580643224217530753988775038134071280913278912076929213205533054167409790255763350562201033743016396270576361718462843521871987597302875960224283014138192050067353449720917684399258671183161029256224750196143380813240958926130346795533521394279097293974910797029107535806685132307945544390707838323140791709830448973673042688450817465368448640675275044384756664331989167700289960570530204254534925728213203301500823002614667025758017716597620666977852600384802466171435249990443145340362233289299750172768997508191361703803810008002781925490986694300528059030313896558781414882486265297718534129195036795476286237495369748499864177195035400276049889046494060810955378203735822944219876672435549537426491679670028977561159453279606344056950817258402935374662259507175991197957863168172449337739518186056664636065797254893818397732987688644127446525866095556132138792079094205076799270464408290912981398937868263569807347335393320329503749690051680307200250919063608307960099471502070502188750917914040083045442598841185675953753222702943412259539454999424075169588733537891951318372320394068751017630902514472021158520591566164231897927930526104794680033850808303524747477905354112218118092743626990693089219216951524049755863440727372105320671935,352638738432)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.8; f = G.9; g = G.11; h = G.13; i = G.15; j = G.17; k = G.19; l = G.21; m = G.23; n = G.25; o = G.26; p = G.27; q = G.28; r = G.29;
 
Permutation group:Degree $36$ $\langle(1,26)(2,25)(3,27)(4,28,5,30)(6,29)(7,20,31,9,19,33)(8,21,32)(10,34,23,12,35,22) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,26)(2,25)(3,27)(4,28,5,30)(6,29)(7,20,31,9,19,33)(8,21,32)(10,34,23,12,35,22)(11,36,24)(14,15)(16,17,18), (1,36,31,16,15,23,7,30,2,34,33,18,13,22,9,29,3,35,32,17,14,24,8,28)(4,27,11,20)(5,26,10,21)(6,25,12,19) >;
 
Copy content gap:G := Group( (1,26)(2,25)(3,27)(4,28,5,30)(6,29)(7,20,31,9,19,33)(8,21,32)(10,34,23,12,35,22)(11,36,24)(14,15)(16,17,18), (1,36,31,16,15,23,7,30,2,34,33,18,13,22,9,29,3,35,32,17,14,24,8,28)(4,27,11,20)(5,26,10,21)(6,25,12,19) );
 
Copy content sage:G = PermutationGroup(['(1,26)(2,25)(3,27)(4,28,5,30)(6,29)(7,20,31,9,19,33)(8,21,32)(10,34,23,12,35,22)(11,36,24)(14,15)(16,17,18)', '(1,36,31,16,15,23,7,30,2,34,33,18,13,22,9,29,3,35,32,17,14,24,8,28)(4,27,11,20)(5,26,10,21)(6,25,12,19)'])
 
Transitive group: 36T118194 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_3^{12}$ . $(A_4^2\wr C_2.C_2^2.C_4)$ $(C_3^{12}.C_2^8.C_3^4.\OD_{16})$ . $C_2$ (2) $(C_3^{11}.D_6.C_2^6)$ . $(C_3:S_3^3.C_4)$ $(C_3^{12}.C_2^4.C_2^4.C_3.S_3^3)$ . $C_4$ (2) all 10

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2} \times C_{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 15 normal subgroups (11 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 7 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $4112 \times 4112$ character table is not available for this group.

Rational character table

The $3636 \times 3636$ rational character table is not available for this group.