Properties

Label 352638738432.eb
Order \( 2^{13} \cdot 3^{16} \)
Exponent \( 2^{3} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{4} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{16} \cdot 3^{16} \)
$\card{\mathrm{Out}(G)}$ \( 2^{3} \)
Perm deg. $36$
Trans deg. $36$
Rank $4$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,28,26,18)(2,30,25,17)(3,29,27,16)(4,15,6,13)(5,14)(7,11,21,22)(8,12,20,23,9,10,19,24)(31,35,32,36,33,34), (1,20,2,19)(3,21)(4,36,28,24,16,12)(5,35,29,22,18,11)(6,34,30,23,17,10)(7,26)(8,25)(9,27)(13,32)(14,31,15,33), (1,32,3,33)(2,31)(4,11,16,23,30,34)(5,10,17,24,29,35)(6,12,18,22,28,36)(7,27)(8,26,9,25)(13,20)(14,21)(15,19), (1,15,25,2,14,26)(3,13,27)(4,5,6)(7,21,8,19,9,20)(11,12)(16,30,17,29,18,28)(22,23,24)(31,32,33) >;
 
Copy content gap:G := Group( (1,28,26,18)(2,30,25,17)(3,29,27,16)(4,15,6,13)(5,14)(7,11,21,22)(8,12,20,23,9,10,19,24)(31,35,32,36,33,34), (1,20,2,19)(3,21)(4,36,28,24,16,12)(5,35,29,22,18,11)(6,34,30,23,17,10)(7,26)(8,25)(9,27)(13,32)(14,31,15,33), (1,32,3,33)(2,31)(4,11,16,23,30,34)(5,10,17,24,29,35)(6,12,18,22,28,36)(7,27)(8,26,9,25)(13,20)(14,21)(15,19), (1,15,25,2,14,26)(3,13,27)(4,5,6)(7,21,8,19,9,20)(11,12)(16,30,17,29,18,28)(22,23,24)(31,32,33) );
 
Copy content sage:G = PermutationGroup(['(1,28,26,18)(2,30,25,17)(3,29,27,16)(4,15,6,13)(5,14)(7,11,21,22)(8,12,20,23,9,10,19,24)(31,35,32,36,33,34)', '(1,20,2,19)(3,21)(4,36,28,24,16,12)(5,35,29,22,18,11)(6,34,30,23,17,10)(7,26)(8,25)(9,27)(13,32)(14,31,15,33)', '(1,32,3,33)(2,31)(4,11,16,23,30,34)(5,10,17,24,29,35)(6,12,18,22,28,36)(7,27)(8,26,9,25)(13,20)(14,21)(15,19)', '(1,15,25,2,14,26)(3,13,27)(4,5,6)(7,21,8,19,9,20)(11,12)(16,30,17,29,18,28)(22,23,24)(31,32,33)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1260152482983241046353114870072224609880162647762044525971302392256049544457760283544415024150057650351935145223495420045756926476357968854046183051162149880430397549425067629988614337095319553608708343441540416970119882567676954567602448485785413778341979364198483443591621630937854210348886273105588777972536639250769278574460560984766521584721735749571704521207728866325495550511507327315276263426279289104509012617899674223961449352451828943981093788071227500294419738463261833963655112033722943094740679439902352500441218351789937048241756638315321400768696468860720806206387010644965886720566403854596129747887294740165166961353785484516257879670843626297479238071131997654722290428766815888247071096977371087784396496290724891572482336817874434496850168064306697073475547362753003180748271332646772753684985757276117736504546396480579798871136719193361960656174895802856247150485024922303309443717699419454656704683784722650699984775843209492477816507003848869492510221621983247350266413525969944525163539458502499397710102070170693055492552848912512409535337765322170348312624483118063227352367501668803852274624308433110078569296509062801752384164968579421141722964393239113555280180261067481533175292317444500824007311458345609200137091857847659595260855343970157340310440592862663726677645339272362580389126768061351621677045613891524488182018182995444328156308815433372631798589790432533684668250112533829620575807306180598132956533460253057377240007805494104018568728762946335322075371060340543102185465526136953493618870002269764456346374825043060959038757263465921365056826093633577568997090227432352951024477650896897630711004723940591843214879042146071959876527537081522579820839279006116289815021465836257151363141641932855399397569392521430209321832131568097998112094219616235801495424429779604455688194065881763909485800716914259174612967491092634442298163315826294648823873873209581264427193492612393354366016398251804991532649184042813240827083454054529439226868783647813379843831580855557783351925093835729115149034719526708983820328264895030407684555848542010684451248202219480266652169803917490201421284302267159826962931882447142024367887675673110759765235585859416974054146576381860693933343091450854172553505048719171721197699950867230237926552064144608543436155478849781138781273814765653082319465192532772397957620682011928578024149889272339282114956012721325461689241410524936930271394519642488927946248470578399540422541842661155127044476303583399244065694269510102896688909232390026170547493835976407039752047646516963791670461657458729448971623393488432054185199652891015662498283935039505222243412168611352807941596563591503154016091538693378703501684636655944708023926459382326376646666935848936861475356181057562062876907881275866923979280320579210529948049381661466394963898025757269370239248288447684346217257072913165708121620022169243699420212340898266541848814357787570286691711929091084592760675972841555951032525631443172526061981529766202686307492920448815653655301778901244300827470055121689436887254481658755331136825759918584733868578225024130838710728208627403094498502780965951601224518385763471886995430107105355844603886348561121688882722146164511470509303423576649806514439986538229130913800058072503918007318199437627203045897672550649997917653536120446241972068622254122525512619042314605990275079708537492551407750125189643493417124738092718349998258817781228069652107459100459816974489859967669531408044359610338007805919484996782562143850018649337926652948521909059496750404648111440548370480018680387060194811948856357990402634720210510845805144574391572870535710054016468480186699089313099085865897883183688690521471,352638738432)'); a = G.1; b = G.2; c = G.3; d = G.5; e = G.7; f = G.8; g = G.10; h = G.12; i = G.14; j = G.16; k = G.18; l = G.20; m = G.22; n = G.24; o = G.25; p = G.26; q = G.27; r = G.28; s = G.29;
 

Group information

Description:$C_3^{12}.C_2^8.C_3.S_3^3.C_2^2$
Order: \(352638738432\)\(\medspace = 2^{13} \cdot 3^{16} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(2821109907456\)\(\medspace = 2^{16} \cdot 3^{16} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 13, $C_3$ x 16
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$5$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 9 12 18 24 36
Elements 1 16629327 96059600 4967219376 26692827696 11019960576 3390724800 105053822208 72427141440 88159684608 40814668800 352638738432
Conjugacy classes   1 22 204 45 1274 12 450 771 520 44 250 3593
Divisions 1 22 204 45 1186 12 450 743 520 36 162 3381
Autjugacy classes 1 14 120 24 612 4 142 407 205 12 76 1617

Minimal presentations

Permutation degree:$36$
Transitive degree:$36$
Rank: $4$
Inequivalent generating quadruples: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s \mid d^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([29, 2, 2, 2, 2, 2, 3, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 4463547459328, 6210757653813, 1075870256702, 7968233570942, 7568599334233, 234, 28409695381283, 898795216880, 1393725404970, 14900479466044, 17789552266073, 3933214070082, 2853029243261, 410, 24611958369797, 1699578441442, 11251501130463, 2091464868356, 64720248470758, 19965102029747, 8335969048072, 3271080229629, 741890097182, 88351961359, 452486856456, 56082721932807, 3569041696548, 3929813664065, 2081362999774, 3133782642651, 2222520715592, 156692447077, 674, 81904967345672, 7699546700245, 19980296760738, 2795438274287, 3093947991628, 2617175976435, 775592342552, 71338190640, 46924204296969, 47494776522278, 11707059100547, 12310268903736, 266431062125, 1410624729604, 1044463961613, 50679770912, 4066026151, 850, 45583799500810, 10278092170407, 3163740854100, 521688445441, 4709517266316, 549728273711, 589123010308, 305306599833, 5721170180, 6831418476, 80317671282443, 49610065930600, 18804738871365, 11615746519394, 1095097035007, 2872949298492, 594465213641, 278881035046, 139440536451, 9353315288, 8914700641, 1026, 118187230906380, 8754693083177, 30576697122886, 12721798400787, 2085810974336, 1847151941701, 1060149866910, 9321, 116386016152909, 41147099128842, 8460279929095, 6784785552484, 4584649138065, 607957255742, 296746806571, 232645785672, 5692501073, 36837772042, 36828293595, 3466830272, 1202, 106900064461454, 20992958127403, 13098916877592, 4419681459941, 8060729520280, 4715272056219, 1066638070088, 190514622097, 94421719686, 1948610673, 258766260, 82963534970895, 25931127103532, 44356035529, 9542075277414, 9133134798083, 1090308582880, 39020143293, 67985498, 133041346807, 2747440788, 43237435697, 76307048, 1201040293, 1378, 140240872654864, 9672920114733, 38740627455050, 16636108458775, 3264175812228, 2415507024185, 1386350038882, 2626923, 426229, 127116117711377, 32756039940142, 5453570244747, 19034654631656, 11410352045341, 5662190703978, 1137933248735, 439309341292, 44745180441, 22433589206, 16037732035, 4457462736, 14282314, 134973963, 1554, 151125313310226, 13742594711471, 48488478038860, 10099142907513, 5347695227318, 3474365653963, 1690991011596, 244435140365, 81955369978, 14346426951, 8792664356, 2468471521, 398505635, 244241092, 150695266959379, 91253435846448, 26662817602157, 24926620086826, 1018044698535, 5185873519364, 1025305321873, 388702302, 208385615771, 92998476280, 24881547909, 4386637778, 2609850756, 691154525, 15855334, 1730, 71605667008532, 39475722988849, 22717171032270, 2983429495979, 6831065976472, 5745727148025, 1436507222162, 348938394055, 301956621372, 16216744601, 44903597062, 2301801099, 421788925, 1247322558, 11854031, 159048371294229, 81841569385010, 14350929886735, 19296151776108, 2308612913381, 30674407270, 78479451267, 349182871712, 355714970941, 32247354, 5686647431, 5277036148, 2040224870, 120754687, 415874376, 25242346, 6626811, 13524896, 1104979, 1906, 223618823743126, 111809909784435, 33645734652176, 16993578238957, 1687582185546, 53089955908, 661739984865, 144965246654, 478943693, 3441112095, 282437605, 7796469, 58604455784471, 42273638913076, 16422420805713, 23963332294766, 13237196800459, 1967448434856, 733371480773, 287254211554, 48364294143, 49188736796, 31498399033, 5784328278, 1333597648, 874955949, 19903274, 576862, 405704, 7715484057624, 3693755520053, 16046458732882, 1972708992111, 35704940, 690448147369, 668529158598, 12786077085, 9741773114, 355169201, 270605230, 940117, 59476108723225, 60549512774454, 11501162524883, 12860319933040, 14612581037949, 2598715312298, 433553088583, 730802689572, 58052547329, 48362790814, 41102313723, 6547784600, 1307924994, 1141731359, 2995348, 1954886, 475654, 223746732117530, 125247507679927, 42615778843668, 13496982670193, 15174601356022, 1668911807403, 438391953416, 782582993221, 72121591554, 31153377887, 43340741596, 7457192121, 938115835, 1203909912, 48775097, 12685119, 663053, 37708297804827, 110192073981752, 15613494059605, 31821836401266, 4002932328335, 393021901641, 334298555366, 1604837059, 18881299872, 57137452157, 6935350810, 619553156, 1587151873, 101162670, 131858858707228, 113516957926137, 10984043667542, 13122733525747, 8631194464656, 2466376936906, 822125645799, 358163869220, 15894294827, 3806137653]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s := Explode([G.1, G.2, G.3, G.5, G.7, G.8, G.10, G.12, G.14, G.16, G.18, G.20, G.22, G.24, G.25, G.26, G.27, G.28, G.29]); AssignNames(~G, ["a", "b", "c", "c2", "d", "d2", "e", "f", "f2", "g", "g2", "h", "h2", "i", "i2", "j", "j2", "k", "k2", "l", "l2", "m", "m2", "n", "o", "p", "q", "r", "s"]);
 
Copy content gap:G := PcGroupCode(1260152482983241046353114870072224609880162647762044525971302392256049544457760283544415024150057650351935145223495420045756926476357968854046183051162149880430397549425067629988614337095319553608708343441540416970119882567676954567602448485785413778341979364198483443591621630937854210348886273105588777972536639250769278574460560984766521584721735749571704521207728866325495550511507327315276263426279289104509012617899674223961449352451828943981093788071227500294419738463261833963655112033722943094740679439902352500441218351789937048241756638315321400768696468860720806206387010644965886720566403854596129747887294740165166961353785484516257879670843626297479238071131997654722290428766815888247071096977371087784396496290724891572482336817874434496850168064306697073475547362753003180748271332646772753684985757276117736504546396480579798871136719193361960656174895802856247150485024922303309443717699419454656704683784722650699984775843209492477816507003848869492510221621983247350266413525969944525163539458502499397710102070170693055492552848912512409535337765322170348312624483118063227352367501668803852274624308433110078569296509062801752384164968579421141722964393239113555280180261067481533175292317444500824007311458345609200137091857847659595260855343970157340310440592862663726677645339272362580389126768061351621677045613891524488182018182995444328156308815433372631798589790432533684668250112533829620575807306180598132956533460253057377240007805494104018568728762946335322075371060340543102185465526136953493618870002269764456346374825043060959038757263465921365056826093633577568997090227432352951024477650896897630711004723940591843214879042146071959876527537081522579820839279006116289815021465836257151363141641932855399397569392521430209321832131568097998112094219616235801495424429779604455688194065881763909485800716914259174612967491092634442298163315826294648823873873209581264427193492612393354366016398251804991532649184042813240827083454054529439226868783647813379843831580855557783351925093835729115149034719526708983820328264895030407684555848542010684451248202219480266652169803917490201421284302267159826962931882447142024367887675673110759765235585859416974054146576381860693933343091450854172553505048719171721197699950867230237926552064144608543436155478849781138781273814765653082319465192532772397957620682011928578024149889272339282114956012721325461689241410524936930271394519642488927946248470578399540422541842661155127044476303583399244065694269510102896688909232390026170547493835976407039752047646516963791670461657458729448971623393488432054185199652891015662498283935039505222243412168611352807941596563591503154016091538693378703501684636655944708023926459382326376646666935848936861475356181057562062876907881275866923979280320579210529948049381661466394963898025757269370239248288447684346217257072913165708121620022169243699420212340898266541848814357787570286691711929091084592760675972841555951032525631443172526061981529766202686307492920448815653655301778901244300827470055121689436887254481658755331136825759918584733868578225024130838710728208627403094498502780965951601224518385763471886995430107105355844603886348561121688882722146164511470509303423576649806514439986538229130913800058072503918007318199437627203045897672550649997917653536120446241972068622254122525512619042314605990275079708537492551407750125189643493417124738092718349998258817781228069652107459100459816974489859967669531408044359610338007805919484996782562143850018649337926652948521909059496750404648111440548370480018680387060194811948856357990402634720210510845805144574391572870535710054016468480186699089313099085865897883183688690521471,352638738432); a := G.1; b := G.2; c := G.3; d := G.5; e := G.7; f := G.8; g := G.10; h := G.12; i := G.14; j := G.16; k := G.18; l := G.20; m := G.22; n := G.24; o := G.25; p := G.26; q := G.27; r := G.28; s := G.29;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1260152482983241046353114870072224609880162647762044525971302392256049544457760283544415024150057650351935145223495420045756926476357968854046183051162149880430397549425067629988614337095319553608708343441540416970119882567676954567602448485785413778341979364198483443591621630937854210348886273105588777972536639250769278574460560984766521584721735749571704521207728866325495550511507327315276263426279289104509012617899674223961449352451828943981093788071227500294419738463261833963655112033722943094740679439902352500441218351789937048241756638315321400768696468860720806206387010644965886720566403854596129747887294740165166961353785484516257879670843626297479238071131997654722290428766815888247071096977371087784396496290724891572482336817874434496850168064306697073475547362753003180748271332646772753684985757276117736504546396480579798871136719193361960656174895802856247150485024922303309443717699419454656704683784722650699984775843209492477816507003848869492510221621983247350266413525969944525163539458502499397710102070170693055492552848912512409535337765322170348312624483118063227352367501668803852274624308433110078569296509062801752384164968579421141722964393239113555280180261067481533175292317444500824007311458345609200137091857847659595260855343970157340310440592862663726677645339272362580389126768061351621677045613891524488182018182995444328156308815433372631798589790432533684668250112533829620575807306180598132956533460253057377240007805494104018568728762946335322075371060340543102185465526136953493618870002269764456346374825043060959038757263465921365056826093633577568997090227432352951024477650896897630711004723940591843214879042146071959876527537081522579820839279006116289815021465836257151363141641932855399397569392521430209321832131568097998112094219616235801495424429779604455688194065881763909485800716914259174612967491092634442298163315826294648823873873209581264427193492612393354366016398251804991532649184042813240827083454054529439226868783647813379843831580855557783351925093835729115149034719526708983820328264895030407684555848542010684451248202219480266652169803917490201421284302267159826962931882447142024367887675673110759765235585859416974054146576381860693933343091450854172553505048719171721197699950867230237926552064144608543436155478849781138781273814765653082319465192532772397957620682011928578024149889272339282114956012721325461689241410524936930271394519642488927946248470578399540422541842661155127044476303583399244065694269510102896688909232390026170547493835976407039752047646516963791670461657458729448971623393488432054185199652891015662498283935039505222243412168611352807941596563591503154016091538693378703501684636655944708023926459382326376646666935848936861475356181057562062876907881275866923979280320579210529948049381661466394963898025757269370239248288447684346217257072913165708121620022169243699420212340898266541848814357787570286691711929091084592760675972841555951032525631443172526061981529766202686307492920448815653655301778901244300827470055121689436887254481658755331136825759918584733868578225024130838710728208627403094498502780965951601224518385763471886995430107105355844603886348561121688882722146164511470509303423576649806514439986538229130913800058072503918007318199437627203045897672550649997917653536120446241972068622254122525512619042314605990275079708537492551407750125189643493417124738092718349998258817781228069652107459100459816974489859967669531408044359610338007805919484996782562143850018649337926652948521909059496750404648111440548370480018680387060194811948856357990402634720210510845805144574391572870535710054016468480186699089313099085865897883183688690521471,352638738432)'); a = G.1; b = G.2; c = G.3; d = G.5; e = G.7; f = G.8; g = G.10; h = G.12; i = G.14; j = G.16; k = G.18; l = G.20; m = G.22; n = G.24; o = G.25; p = G.26; q = G.27; r = G.28; s = G.29;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1260152482983241046353114870072224609880162647762044525971302392256049544457760283544415024150057650351935145223495420045756926476357968854046183051162149880430397549425067629988614337095319553608708343441540416970119882567676954567602448485785413778341979364198483443591621630937854210348886273105588777972536639250769278574460560984766521584721735749571704521207728866325495550511507327315276263426279289104509012617899674223961449352451828943981093788071227500294419738463261833963655112033722943094740679439902352500441218351789937048241756638315321400768696468860720806206387010644965886720566403854596129747887294740165166961353785484516257879670843626297479238071131997654722290428766815888247071096977371087784396496290724891572482336817874434496850168064306697073475547362753003180748271332646772753684985757276117736504546396480579798871136719193361960656174895802856247150485024922303309443717699419454656704683784722650699984775843209492477816507003848869492510221621983247350266413525969944525163539458502499397710102070170693055492552848912512409535337765322170348312624483118063227352367501668803852274624308433110078569296509062801752384164968579421141722964393239113555280180261067481533175292317444500824007311458345609200137091857847659595260855343970157340310440592862663726677645339272362580389126768061351621677045613891524488182018182995444328156308815433372631798589790432533684668250112533829620575807306180598132956533460253057377240007805494104018568728762946335322075371060340543102185465526136953493618870002269764456346374825043060959038757263465921365056826093633577568997090227432352951024477650896897630711004723940591843214879042146071959876527537081522579820839279006116289815021465836257151363141641932855399397569392521430209321832131568097998112094219616235801495424429779604455688194065881763909485800716914259174612967491092634442298163315826294648823873873209581264427193492612393354366016398251804991532649184042813240827083454054529439226868783647813379843831580855557783351925093835729115149034719526708983820328264895030407684555848542010684451248202219480266652169803917490201421284302267159826962931882447142024367887675673110759765235585859416974054146576381860693933343091450854172553505048719171721197699950867230237926552064144608543436155478849781138781273814765653082319465192532772397957620682011928578024149889272339282114956012721325461689241410524936930271394519642488927946248470578399540422541842661155127044476303583399244065694269510102896688909232390026170547493835976407039752047646516963791670461657458729448971623393488432054185199652891015662498283935039505222243412168611352807941596563591503154016091538693378703501684636655944708023926459382326376646666935848936861475356181057562062876907881275866923979280320579210529948049381661466394963898025757269370239248288447684346217257072913165708121620022169243699420212340898266541848814357787570286691711929091084592760675972841555951032525631443172526061981529766202686307492920448815653655301778901244300827470055121689436887254481658755331136825759918584733868578225024130838710728208627403094498502780965951601224518385763471886995430107105355844603886348561121688882722146164511470509303423576649806514439986538229130913800058072503918007318199437627203045897672550649997917653536120446241972068622254122525512619042314605990275079708537492551407750125189643493417124738092718349998258817781228069652107459100459816974489859967669531408044359610338007805919484996782562143850018649337926652948521909059496750404648111440548370480018680387060194811948856357990402634720210510845805144574391572870535710054016468480186699089313099085865897883183688690521471,352638738432)'); a = G.1; b = G.2; c = G.3; d = G.5; e = G.7; f = G.8; g = G.10; h = G.12; i = G.14; j = G.16; k = G.18; l = G.20; m = G.22; n = G.24; o = G.25; p = G.26; q = G.27; r = G.28; s = G.29;
 
Permutation group:Degree $36$ $\langle(1,28,26,18)(2,30,25,17)(3,29,27,16)(4,15,6,13)(5,14)(7,11,21,22)(8,12,20,23,9,10,19,24) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,28,26,18)(2,30,25,17)(3,29,27,16)(4,15,6,13)(5,14)(7,11,21,22)(8,12,20,23,9,10,19,24)(31,35,32,36,33,34), (1,20,2,19)(3,21)(4,36,28,24,16,12)(5,35,29,22,18,11)(6,34,30,23,17,10)(7,26)(8,25)(9,27)(13,32)(14,31,15,33), (1,32,3,33)(2,31)(4,11,16,23,30,34)(5,10,17,24,29,35)(6,12,18,22,28,36)(7,27)(8,26,9,25)(13,20)(14,21)(15,19), (1,15,25,2,14,26)(3,13,27)(4,5,6)(7,21,8,19,9,20)(11,12)(16,30,17,29,18,28)(22,23,24)(31,32,33) >;
 
Copy content gap:G := Group( (1,28,26,18)(2,30,25,17)(3,29,27,16)(4,15,6,13)(5,14)(7,11,21,22)(8,12,20,23,9,10,19,24)(31,35,32,36,33,34), (1,20,2,19)(3,21)(4,36,28,24,16,12)(5,35,29,22,18,11)(6,34,30,23,17,10)(7,26)(8,25)(9,27)(13,32)(14,31,15,33), (1,32,3,33)(2,31)(4,11,16,23,30,34)(5,10,17,24,29,35)(6,12,18,22,28,36)(7,27)(8,26,9,25)(13,20)(14,21)(15,19), (1,15,25,2,14,26)(3,13,27)(4,5,6)(7,21,8,19,9,20)(11,12)(16,30,17,29,18,28)(22,23,24)(31,32,33) );
 
Copy content sage:G = PermutationGroup(['(1,28,26,18)(2,30,25,17)(3,29,27,16)(4,15,6,13)(5,14)(7,11,21,22)(8,12,20,23,9,10,19,24)(31,35,32,36,33,34)', '(1,20,2,19)(3,21)(4,36,28,24,16,12)(5,35,29,22,18,11)(6,34,30,23,17,10)(7,26)(8,25)(9,27)(13,32)(14,31,15,33)', '(1,32,3,33)(2,31)(4,11,16,23,30,34)(5,10,17,24,29,35)(6,12,18,22,28,36)(7,27)(8,26,9,25)(13,20)(14,21)(15,19)', '(1,15,25,2,14,26)(3,13,27)(4,5,6)(7,21,8,19,9,20)(11,12)(16,30,17,29,18,28)(22,23,24)(31,32,33)'])
 
Transitive group: 36T118183 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_3^{12}.C_2^8.C_3.S_3^3)$ . $C_2^2$ (2) $(C_3^{12}.C_2^8.C_3^4.Q_8)$ . $C_2^2$ (2) $(C_3^{12}.C_2^8.C_3^4.D_4)$ . $C_2^2$ (6) $(C_3^{12}.C_2^8.C_3.S_3^3.C_2)$ . $C_2$ (4) all 15

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2}^{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 71 normal subgroups (11 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2\wr D_4.C_2^2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^{12}.C_3^4$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 7 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $3593 \times 3593$ character table is not available for this group.

Rational character table

The $3381 \times 3381$ rational character table is not available for this group.