| Presentation: |
${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r \mid c^{6}= \!\cdots\! \rangle}$
|
magma:G := PCGroup([29, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 58, 9989499496318, 28950789291350, 10128193479901, 234, 27062998411043, 11627436103344, 3815182508634, 38018612707324, 23032967439113, 3926429102482, 3538418129921, 410, 2050716571781, 7641738113698, 7077837775071, 2214576277820, 69304436805190, 14756530335827, 8544689674144, 489619934673, 2284859060984, 1075396023013, 586, 11064107357447, 35143943311140, 14982587209025, 3027126018526, 465959822907, 42214350344, 12082032164744, 40791522630133, 15618447350994, 2899744989755, 3959557803718, 1552422367512, 255697014188, 15620832202, 762, 88489720070409, 5786135141798, 6613212471507, 3042031003296, 4545863183645, 1234496289394, 1023119763543, 197045397152, 62526246030, 97922289460170, 38532102954087, 23143308113972, 11070909173905, 1275800762934, 3004290539075, 683915758996, 296296025667, 48780554504, 40933855057, 938, 100914884043659, 8712364479016, 13183963891845, 9745632225890, 75479195647, 3211380890940, 546740787353, 16171355590, 79226550243, 72841853432, 4657108938, 102904073797836, 34345019599529, 21615647235694, 13446086041539, 3864005646824, 321292602697, 1232595549618, 507480274763, 191095938550, 30851663700, 24277324724, 3677938816, 1114, 9427524857869, 41866603591722, 13061119518791, 17512734750436, 7678926251265, 2871699705662, 1235648742235, 330733274472, 47355898709, 8227293111, 20615578448, 36413317031054, 13282014217003, 27319787049672, 12360381624101, 4664918939170, 1285192396959, 262543595948, 87554465137, 228729177246, 89238745175, 33934139764, 19541221713, 2483929532, 2478854416, 1290, 66812108636175, 52837297422380, 17584376168521, 17214621769830, 782718972035, 4391599597216, 1119916606653, 615680642522, 266405414647, 13537489841, 6451235470, 45257943514768, 20072132688429, 29574694152650, 2560401731623, 6537023155140, 2016498937409, 1416261861406, 815907861579, 147311878856, 40809928957, 45244036062, 19700786153, 4739586016, 3290488467, 627856628, 161331250, 1466, 75145697353745, 16104395220555, 7698046284392, 4724662390405, 4267529701794, 1281838701503, 23983703673, 118542491990, 24062630131, 77235456, 498596031, 26003641121874, 57021582472751, 32911799161036, 9615805363689, 7106604841574, 739890575875, 1754011153920, 595520716469, 59759838106, 51734827287, 48629759384, 4455275035, 8660675670, 544201055, 703642852, 180319611, 173687804, 87002860, 1642, 134993261076499, 5676807628848, 40121022228557, 24483041441386, 1512593637255, 2878080491684, 68526155713, 769627111902, 145099797371, 125057001880, 25927197429, 8150466578, 3291105967, 1101754505, 183626163, 164186568006068, 75197108657713, 44182493591118, 21682979470763, 10793377780552, 4360056924549, 1541591234258, 865668307111, 146528440380, 7010243129, 24326366458, 28540411413, 255239576, 2121936661, 128518914, 610167299, 192822064, 19648100, 16949650, 1818, 31343915851797, 4598994723890, 54800429409871, 25321095486828, 9004338338825, 3695941104934, 1570243885251, 130198793725, 14685647610, 4865173943, 25539681364, 4439163537, 607458091, 101243429, 150904433645590, 83174844847155, 31827169119824, 26887293037, 14280140021898, 5446201676135, 1732809267844, 166512078686, 143903724187, 33185832936, 26669456405, 3789670258, 1262359292, 105509214, 17649364, 133974055157783, 4661705281588, 34924399810641, 27548196443246, 1195600559755, 4009724508840, 1705589582021, 142749444351, 16280487068, 60932985145, 5412438, 4857156083, 659374125, 18316481, 115434655718424, 3023738035253, 62573120524882, 13692061670511, 15404990054540, 5959969243369, 1182080692998, 967479811427, 184847508256, 157228905885, 15674720714, 18401126743, 4226321172, 1379646430, 116406488, 19679946, 144154, 125596380708889, 47158712220726, 21813670614611, 10801831023472, 15939813681933, 1401141141674, 252946032967, 594589103076, 354907365953, 156755948830, 72245493531, 7657214168, 9827322709, 32573231, 123994281, 41042275, 54893, 75127772491802, 60924965909815, 8092791036372, 4609173673841, 13750106542, 8394540419403, 1981914967496, 531316288741, 337406301186, 17872094303, 31407069916, 14758786137, 9904530686, 7644252, 224988917594139, 136232068202552, 64995549438037, 30342894575730, 12149159694479, 1610704714953, 827173928678, 59554704643, 62939068733, 31955721178, 1654297719, 87170315, 14207301, 1506055, 109255324151836, 11376036970041, 54966170039126, 21026408789491, 11142829903824, 4537656433325, 2180608796938, 38716706852, 39237985, 301185966, 5074742363, 1079884744, 1594940114, 265823772]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r := Explode([G.1, G.3, G.5, G.7, G.9, G.11, G.13, G.15, G.17, G.19, G.21, G.23, G.24, G.25, G.26, G.27, G.28, G.29]); AssignNames(~G, ["a", "a2", "b", "b2", "c", "c2", "d", "d2", "e", "e2", "f", "f2", "g", "g2", "h", "h2", "i", "i2", "j", "j2", "k", "k2", "l", "m", "n", "o", "p", "q", "r"]);
gap:G := PcGroupCode(1258884594978015523072548606104976117289554186957631619101345599164651042471890767977574857825048940671917426131946276701223381346417225023220914859529835041641320220107837181888169320695253519531056418482629953269144531800152671533123739734770612607172466285843347793438650760082549869851738304483477716699151997672470431209402558548287131361829836890250768501037358570417317427509445520921729726576488636290470930322690970541194215601490576066515734866059458423820881642892151153588433579357236628316486076225090626678244735194157833380529234758028155507582771635147367570568278954636054980017229308700072160299652267211361629082653356083354992365627546905127102619013051983560358299225712299638765259124742492180486741061945361117436949440706700413244060310219421388571598762172812701333656631522789156298812405472205872904191151424644559555811065526979999106766317256926182498877298345272031863356039286867493805010699826822701347673115901032005104710552429852114502495280199712239270729797553209807269734447407278454839648125799004572492832984611714345456040348819380388078252178368569100798737170869927099752462904814540329825388660961159484551635997086994667656773298307867479184563571387499868842028661183764865000342935498148642280914736919069294079409790707880849259168253861518925242969675001596811653328788280372562172691982000092313254455683098637539280774645251685306187942225320367292344536829186933502436813647076132076573077196531828259402208745187591310899986077758633267772182293168815378559458796920032338648255435973217213391011401508393390402939495595429863356731923708288915352112701740194816794845450482895278751640525928650074502754795730716828965063539762283204333843756975626617203797772018765385370631620104095537158867730724018345045644617951622417804394491787058249808151356553153645699985186214376008046348700878838425431547588897873866188921536780964799529524895350582367199975313018017185215776572895853409859100898677108838883186297177273123101632963483688769184975417376067290610380718549416435317844080293203600425363904232145995939350615077093273746089138791431550757797333987179766208155231229800727235055544042742670045341753395680051485427627591733447914200177883660457678085911841571387448504836689060444453440412787131801565047991328972798798711866154715377099192244893369663881580540378057426462995552717225458778521835159623457570614885195606226204815714959447201407956322728346707330932043233900456379374281941116139098934969452207746711246924353328444003590674283447559555754661229094969281687867276865643250838324446486145409032297268824748910372102778102912021671528403736222893470479865315891303557891384342863111840865332657099298114085622054378194153062041640709872137808875622288789807275119955234125805038409881855907805268117844084419003580846809968422133244714006274432175101691728766864599056491921118794385642093063996653724811351305578134138374841961256063272107976388983326901102625366490322106758623527475800705963868369985513262605419370471852563552693893719514911699421095411576966229315431813125571905012585675204049432710735471828998455257936293371544429011066859744819788213460966937459661358406837398638489673459287496295941456162542265488197071138001302948342845272760980349973815146128313318178508120341648174132021799957775305964201138750916915114675794439102308196923800592107861887494617388145229614501236650586323380998407577803770794998242918645727428232091214658073892168077957836484518617150618467217771767861851556921036694693671206411691101952712280591472518916651285066119096058358315013831076386888749576134275067633274817607044908725621492134195918696110677418690076819821097628027076359371361758018228361656316726144746820721772853306134583627743100946848471303952312364632965017359880013323457032023544243748365906377641869869587823711059048903739670440703,352638738432); a := G.1; b := G.3; c := G.5; d := G.7; e := G.9; f := G.11; g := G.13; h := G.15; i := G.17; j := G.19; k := G.21; l := G.23; m := G.24; n := G.25; o := G.26; p := G.27; q := G.28; r := G.29;
sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(1258884594978015523072548606104976117289554186957631619101345599164651042471890767977574857825048940671917426131946276701223381346417225023220914859529835041641320220107837181888169320695253519531056418482629953269144531800152671533123739734770612607172466285843347793438650760082549869851738304483477716699151997672470431209402558548287131361829836890250768501037358570417317427509445520921729726576488636290470930322690970541194215601490576066515734866059458423820881642892151153588433579357236628316486076225090626678244735194157833380529234758028155507582771635147367570568278954636054980017229308700072160299652267211361629082653356083354992365627546905127102619013051983560358299225712299638765259124742492180486741061945361117436949440706700413244060310219421388571598762172812701333656631522789156298812405472205872904191151424644559555811065526979999106766317256926182498877298345272031863356039286867493805010699826822701347673115901032005104710552429852114502495280199712239270729797553209807269734447407278454839648125799004572492832984611714345456040348819380388078252178368569100798737170869927099752462904814540329825388660961159484551635997086994667656773298307867479184563571387499868842028661183764865000342935498148642280914736919069294079409790707880849259168253861518925242969675001596811653328788280372562172691982000092313254455683098637539280774645251685306187942225320367292344536829186933502436813647076132076573077196531828259402208745187591310899986077758633267772182293168815378559458796920032338648255435973217213391011401508393390402939495595429863356731923708288915352112701740194816794845450482895278751640525928650074502754795730716828965063539762283204333843756975626617203797772018765385370631620104095537158867730724018345045644617951622417804394491787058249808151356553153645699985186214376008046348700878838425431547588897873866188921536780964799529524895350582367199975313018017185215776572895853409859100898677108838883186297177273123101632963483688769184975417376067290610380718549416435317844080293203600425363904232145995939350615077093273746089138791431550757797333987179766208155231229800727235055544042742670045341753395680051485427627591733447914200177883660457678085911841571387448504836689060444453440412787131801565047991328972798798711866154715377099192244893369663881580540378057426462995552717225458778521835159623457570614885195606226204815714959447201407956322728346707330932043233900456379374281941116139098934969452207746711246924353328444003590674283447559555754661229094969281687867276865643250838324446486145409032297268824748910372102778102912021671528403736222893470479865315891303557891384342863111840865332657099298114085622054378194153062041640709872137808875622288789807275119955234125805038409881855907805268117844084419003580846809968422133244714006274432175101691728766864599056491921118794385642093063996653724811351305578134138374841961256063272107976388983326901102625366490322106758623527475800705963868369985513262605419370471852563552693893719514911699421095411576966229315431813125571905012585675204049432710735471828998455257936293371544429011066859744819788213460966937459661358406837398638489673459287496295941456162542265488197071138001302948342845272760980349973815146128313318178508120341648174132021799957775305964201138750916915114675794439102308196923800592107861887494617388145229614501236650586323380998407577803770794998242918645727428232091214658073892168077957836484518617150618467217771767861851556921036694693671206411691101952712280591472518916651285066119096058358315013831076386888749576134275067633274817607044908725621492134195918696110677418690076819821097628027076359371361758018228361656316726144746820721772853306134583627743100946848471303952312364632965017359880013323457032023544243748365906377641869869587823711059048903739670440703,352638738432)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.11; g = G.13; h = G.15; i = G.17; j = G.19; k = G.21; l = G.23; m = G.24; n = G.25; o = G.26; p = G.27; q = G.28; r = G.29;
sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(1258884594978015523072548606104976117289554186957631619101345599164651042471890767977574857825048940671917426131946276701223381346417225023220914859529835041641320220107837181888169320695253519531056418482629953269144531800152671533123739734770612607172466285843347793438650760082549869851738304483477716699151997672470431209402558548287131361829836890250768501037358570417317427509445520921729726576488636290470930322690970541194215601490576066515734866059458423820881642892151153588433579357236628316486076225090626678244735194157833380529234758028155507582771635147367570568278954636054980017229308700072160299652267211361629082653356083354992365627546905127102619013051983560358299225712299638765259124742492180486741061945361117436949440706700413244060310219421388571598762172812701333656631522789156298812405472205872904191151424644559555811065526979999106766317256926182498877298345272031863356039286867493805010699826822701347673115901032005104710552429852114502495280199712239270729797553209807269734447407278454839648125799004572492832984611714345456040348819380388078252178368569100798737170869927099752462904814540329825388660961159484551635997086994667656773298307867479184563571387499868842028661183764865000342935498148642280914736919069294079409790707880849259168253861518925242969675001596811653328788280372562172691982000092313254455683098637539280774645251685306187942225320367292344536829186933502436813647076132076573077196531828259402208745187591310899986077758633267772182293168815378559458796920032338648255435973217213391011401508393390402939495595429863356731923708288915352112701740194816794845450482895278751640525928650074502754795730716828965063539762283204333843756975626617203797772018765385370631620104095537158867730724018345045644617951622417804394491787058249808151356553153645699985186214376008046348700878838425431547588897873866188921536780964799529524895350582367199975313018017185215776572895853409859100898677108838883186297177273123101632963483688769184975417376067290610380718549416435317844080293203600425363904232145995939350615077093273746089138791431550757797333987179766208155231229800727235055544042742670045341753395680051485427627591733447914200177883660457678085911841571387448504836689060444453440412787131801565047991328972798798711866154715377099192244893369663881580540378057426462995552717225458778521835159623457570614885195606226204815714959447201407956322728346707330932043233900456379374281941116139098934969452207746711246924353328444003590674283447559555754661229094969281687867276865643250838324446486145409032297268824748910372102778102912021671528403736222893470479865315891303557891384342863111840865332657099298114085622054378194153062041640709872137808875622288789807275119955234125805038409881855907805268117844084419003580846809968422133244714006274432175101691728766864599056491921118794385642093063996653724811351305578134138374841961256063272107976388983326901102625366490322106758623527475800705963868369985513262605419370471852563552693893719514911699421095411576966229315431813125571905012585675204049432710735471828998455257936293371544429011066859744819788213460966937459661358406837398638489673459287496295941456162542265488197071138001302948342845272760980349973815146128313318178508120341648174132021799957775305964201138750916915114675794439102308196923800592107861887494617388145229614501236650586323380998407577803770794998242918645727428232091214658073892168077957836484518617150618467217771767861851556921036694693671206411691101952712280591472518916651285066119096058358315013831076386888749576134275067633274817607044908725621492134195918696110677418690076819821097628027076359371361758018228361656316726144746820721772853306134583627743100946848471303952312364632965017359880013323457032023544243748365906377641869869587823711059048903739670440703,352638738432)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.11; g = G.13; h = G.15; i = G.17; j = G.19; k = G.21; l = G.23; m = G.24; n = G.25; o = G.26; p = G.27; q = G.28; r = G.29;
|
| Permutation group: | Degree $36$
$\langle(1,36,13,11,26,22)(2,34,14,12,25,24,3,35,15,10,27,23)(4,7,6,8,5,9)(16,21) \!\cdots\! \rangle$
|
magma:G := PermutationGroup< 36 | (1,36,13,11,26,22)(2,34,14,12,25,24,3,35,15,10,27,23)(4,7,6,8,5,9)(16,21)(17,19)(18,20)(28,32,29,31)(30,33), (1,7,14,20,3,8,13,21,2,9,15,19)(4,34,28,23,5,36,29,24)(6,35,30,22)(10,16)(11,17,12,18)(25,31,27,32,26,33), (1,14,26,2,15,25,3,13,27)(4,6)(7,31,20)(8,33,21)(9,32,19)(10,24)(11,22)(12,23)(16,28,17,29)(18,30)(34,35,36) >;
gap:G := Group( (1,36,13,11,26,22)(2,34,14,12,25,24,3,35,15,10,27,23)(4,7,6,8,5,9)(16,21)(17,19)(18,20)(28,32,29,31)(30,33), (1,7,14,20,3,8,13,21,2,9,15,19)(4,34,28,23,5,36,29,24)(6,35,30,22)(10,16)(11,17,12,18)(25,31,27,32,26,33), (1,14,26,2,15,25,3,13,27)(4,6)(7,31,20)(8,33,21)(9,32,19)(10,24)(11,22)(12,23)(16,28,17,29)(18,30)(34,35,36) );
sage:G = PermutationGroup(['(1,36,13,11,26,22)(2,34,14,12,25,24,3,35,15,10,27,23)(4,7,6,8,5,9)(16,21)(17,19)(18,20)(28,32,29,31)(30,33)', '(1,7,14,20,3,8,13,21,2,9,15,19)(4,34,28,23,5,36,29,24)(6,35,30,22)(10,16)(11,17,12,18)(25,31,27,32,26,33)', '(1,14,26,2,15,25,3,13,27)(4,6)(7,31,20)(8,33,21)(9,32,19)(10,24)(11,22)(12,23)(16,28,17,29)(18,30)(34,35,36)'])
|
| Transitive group: |
36T118153 |
|
|
|
more information |
| Direct product: |
not computed |
| Semidirect product: |
not computed |
| Trans. wreath product: |
not isomorphic to a non-trivial transitive wreath product |
| Possibly split product: |
$(C_3^{12}.C_2^8.C_3^4.C_4^2)$ . $C_2$ (2) |
$C_3^{12}$ . $(C_2^8.C_3^4:C_4^2:C_2)$ |
$(C_3^{12}.C_2^8.C_3^4.C_4:C_4)$ . $C_2$ |
$(C_3^{12}.C_2^8.C_3^4.C_4:C_4)$ . $C_2$ |
all 15 |
Elements of the group are displayed as permutations of degree 36.
The $4244 \times 4244$ character table is not available for this group.
The $4088 \times 4088$ rational character table is not available for this group.