Properties

Label 3513840.b
Order \( 2^{4} \cdot 3 \cdot 5 \cdot 11^{4} \)
Exponent \( 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{2} \cdot 5 \cdot 11 \)
$\card{Z(G)}$ 110
$\card{\Aut(G)}$ \( 2^{9} \cdot 3 \cdot 5^{3} \cdot 11^{3} \)
$\card{\mathrm{Out}(G)}$ \( 2^{6} \cdot 5^{3} \)
Perm deg. not computed
Trans deg. $2640$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath (using Gap)

Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([10, -2, -5, -11, -2, -2, -2, -3, -11, -11, 11, 20, 111, 90019603, 113, 74041004, 144, 142850405, 175, 48725606, 276, 2112007, 39204008, 475238, 653448, 386158, 196088, 243936009, 2217639, 171649, 13259, 392769]); a,b,c,d := Explode([G.1, G.4, G.9, G.10]); AssignNames(~G, ["a", "a2", "a10", "b", "b2", "b4", "b8", "b24", "c", "d"]);
 
Copy content gap:G := PcGroupCode(1602076687943580221724194239618802515349402923347689132781686755429883090388016635701336709333474648337514640422619542532444330549685897134511512597710390001999,3513840); a := G.1; b := G.4; c := G.9; d := G.10;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1602076687943580221724194239618802515349402923347689132781686755429883090388016635701336709333474648337514640422619542532444330549685897134511512597710390001999,3513840)'); a = G.1; b = G.4; c = G.9; d = G.10;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1602076687943580221724194239618802515349402923347689132781686755429883090388016635701336709333474648337514640422619542532444330549685897134511512597710390001999,3513840)'); a = G.1; b = G.4; c = G.9; d = G.10;
 

Group information

Description:$(C_{11}^2\times C_{110}).D_{132}$
Order: \(3513840\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 11^{4} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage:G.Order()
 
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage:G.Exponent()
 
Automorphism group:Group of order \(255552000\)\(\medspace = 2^{9} \cdot 3 \cdot 5^{3} \cdot 11^{3} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 4, $C_3$, $C_5$, $C_{11}$ x 4
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage:G.CompositionSeries()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 5 6 8 10 11 12 15 20 22 24 30 33 40 44 55 60 66 88 110 120 132 165 220 264 330 440 660 1320
Elements 1 1453 242 1694 4 242 484 5812 14640 484 968 6776 188880 968 968 29040 1936 203280 58560 1936 29040 58080 755520 3872 58080 116160 813120 116160 116160 232320 232320 464640 3513840
Conjugacy classes   1 2 1 2 4 1 2 8 725 2 4 8 845 4 4 120 8 240 2900 8 120 240 3380 16 240 480 960 480 480 960 960 1920 15125
Divisions 1 2 1 2 1 1 1 2 79 1 1 2 91 1 1 7 1 14 79 1 7 7 91 1 7 7 14 7 7 7 7 7 458

Minimal presentations

Permutation degree:not computed
Transitive degree:$2640$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath (using Gap)


Presentation: ${\langle a, b, c, d \mid a^{110}=b^{264}=c^{11}=d^{11}=[c,d]=1, b^{a}=b^{131}d^{7}, c^{a}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([10, -2, -5, -11, -2, -2, -2, -3, -11, -11, 11, 20, 111, 90019603, 113, 74041004, 144, 142850405, 175, 48725606, 276, 2112007, 39204008, 475238, 653448, 386158, 196088, 243936009, 2217639, 171649, 13259, 392769]); a,b,c,d := Explode([G.1, G.4, G.9, G.10]); AssignNames(~G, ["a", "a2", "a10", "b", "b2", "b4", "b8", "b24", "c", "d"]);
 
Copy content gap:G := PcGroupCode(1602076687943580221724194239618802515349402923347689132781686755429883090388016635701336709333474648337514640422619542532444330549685897134511512597710390001999,3513840); a := G.1; b := G.4; c := G.9; d := G.10;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1602076687943580221724194239618802515349402923347689132781686755429883090388016635701336709333474648337514640422619542532444330549685897134511512597710390001999,3513840)'); a = G.1; b = G.4; c = G.9; d = G.10;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1602076687943580221724194239618802515349402923347689132781686755429883090388016635701336709333474648337514640422619542532444330549685897134511512597710390001999,3513840)'); a = G.1; b = G.4; c = G.9; d = G.10;
 
Matrix group:$\left\langle \left(\begin{array}{rr} 120 & 1 \\ 120 & 0 \end{array}\right), \left(\begin{array}{rr} 27 & 0 \\ 0 & 27 \end{array}\right), \left(\begin{array}{rr} 56 & 0 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 34 & 110 \\ 22 & 23 \end{array}\right), \left(\begin{array}{rr} 103 & 72 \\ 98 & 18 \end{array}\right), \left(\begin{array}{rr} 31 & 86 \\ 62 & 90 \end{array}\right), \left(\begin{array}{rr} 111 & 0 \\ 0 & 111 \end{array}\right), \left(\begin{array}{rr} 120 & 0 \\ 0 & 120 \end{array}\right), \left(\begin{array}{rr} 45 & 99 \\ 22 & 12 \end{array}\right), \left(\begin{array}{rr} 103 & 23 \\ 49 & 18 \end{array}\right) \right\rangle \subseteq \GL_{2}(\Z/121\Z)$
Copy content comment:Define the group as a matrix group with coefficients in GLZq
 
Copy content magma:G := MatrixGroup< 2, Integers(121) | [[120, 1, 120, 0], [27, 0, 0, 27], [56, 0, 0, 1], [34, 110, 22, 23], [103, 72, 98, 18], [31, 86, 62, 90], [111, 0, 0, 111], [120, 0, 0, 120], [45, 99, 22, 12], [103, 23, 49, 18]] >;
 
Copy content gap:G := Group([[[ZmodnZObj(120,121), ZmodnZObj(1,121)], [ZmodnZObj(120,121), ZmodnZObj(0,121)]],[[ZmodnZObj(27,121), ZmodnZObj(0,121)], [ZmodnZObj(0,121), ZmodnZObj(27,121)]],[[ZmodnZObj(56,121), ZmodnZObj(0,121)], [ZmodnZObj(0,121), ZmodnZObj(1,121)]],[[ZmodnZObj(34,121), ZmodnZObj(110,121)], [ZmodnZObj(22,121), ZmodnZObj(23,121)]],[[ZmodnZObj(103,121), ZmodnZObj(72,121)], [ZmodnZObj(98,121), ZmodnZObj(18,121)]],[[ZmodnZObj(31,121), ZmodnZObj(86,121)], [ZmodnZObj(62,121), ZmodnZObj(90,121)]],[[ZmodnZObj(111,121), ZmodnZObj(0,121)], [ZmodnZObj(0,121), ZmodnZObj(111,121)]],[[ZmodnZObj(120,121), ZmodnZObj(0,121)], [ZmodnZObj(0,121), ZmodnZObj(120,121)]],[[ZmodnZObj(45,121), ZmodnZObj(99,121)], [ZmodnZObj(22,121), ZmodnZObj(12,121)]],[[ZmodnZObj(103,121), ZmodnZObj(23,121)], [ZmodnZObj(49,121), ZmodnZObj(18,121)]]]);
 
Copy content sage:MS = MatrixSpace(Integers(121), 2, 2) G = MatrixGroup([MS([[120, 1], [120, 0]]), MS([[27, 0], [0, 27]]), MS([[56, 0], [0, 1]]), MS([[34, 110], [22, 23]]), MS([[103, 72], [98, 18]]), MS([[31, 86], [62, 90]]), MS([[111, 0], [0, 111]]), MS([[120, 0], [0, 120]]), MS([[45, 99], [22, 12]]), MS([[103, 23], [49, 18]])])
 
Direct product: not computed
Semidirect product: $C_{11}^4$ $\,\rtimes\,$ $(C_{120}:C_2)$ $(C_{11}^4:C_{15})$ $\,\rtimes\,$ $\SD_{16}$ $(C_{11}^3\times C_{55})$ $\,\rtimes\,$ $(C_{24}:C_2)$ $(C_{11}^4:C_3)$ $\,\rtimes\,$ $(C_5\times \SD_{16})$ more information
Trans. wreath product: not computed
Possibly split product: $(C_{11}^4:C_{40})$ . $S_3$ $(C_{11}^4:C_{30})$ . $D_4$ $(C_{11}^4:C_{20})$ . $D_6$ $(C_{11}^4:D_{12})$ . $C_{10}$ all 82

Elements of the group are displayed as matrices in $\GL_{2}(\Z/{121}\Z)$.

Homology

Abelianization: $C_{2} \times C_{110} \simeq C_{2}^{2} \times C_{5} \times C_{11}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage:G.AllSubgroups()
 

There are 92 normal subgroups, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_{110}$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage:G.Center()
 
Commutator: a subgroup isomorphic to $C_{11}^2:C_{132}$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_2$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage:G.Socle()
 
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5$
11-Sylow subgroup: $P_{ 11 } \simeq$ $C_{11}^4$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 1 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $15125 \times 15125$ character table is not available for this group.

Rational character table

The $458 \times 458$ rational character table is not available for this group.