Group information
Description: | $\SOPlus(8,2)$ | |
Order: | \(348364800\)\(\medspace = 2^{13} \cdot 3^{5} \cdot 5^{2} \cdot 7 \) |
|
Exponent: | \(2520\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \) |
|
Automorphism group: | Group of order \(348364800\)\(\medspace = 2^{13} \cdot 3^{5} \cdot 5^{2} \cdot 7 \) |
|
Composition factors: | $C_2$, $\OmegaPlus(8,2)$ |
|
Derived length: | $1$ |
|
This group is nonabelian, nonsolvable, and rational. Whether it is almost simple has not been computed.
Group statistics
Order | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 12 | 14 | 15 | 18 | 20 | 24 | 30 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Elements | 1 | 107535 | 365120 | 8210160 | 1741824 | 30287040 | 24883200 | 39916800 | 19353600 | 31933440 | 68947200 | 24883200 | 34836480 | 19353600 | 17418240 | 14515200 | 11612160 | 348364800 |
Conjugacy classes | 1 | 6 | 4 | 10 | 2 | 16 | 1 | 5 | 2 | 3 | 10 | 1 | 2 | 1 | 1 | 1 | 1 | 67 |
Divisions | 1 | 6 | 4 | 10 | 2 | 16 | 1 | 5 | 2 | 3 | 10 | 1 | 2 | 1 | 1 | 1 | 1 | 67 |
Autjugacy classes | 1 | 6 | 4 | 10 | 2 | 16 | 1 | 5 | 2 | 3 | 10 | 1 | 2 | 1 | 1 | 1 | 1 | 67 |
Dimension | 1 | 28 | 35 | 50 | 70 | 84 | 168 | 175 | 210 | 300 | 350 | 420 | 525 | 567 | 700 | 840 | 972 | 1050 | 1134 | 1344 | 1400 | 1575 | 1680 | 2100 | 2240 | 2268 | 2688 | 2835 | 3150 | 3200 | 4096 | 4200 | 4480 | 4536 | 5670 | 6075 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Irr. complex chars. | 2 | 2 | 2 | 2 | 1 | 2 | 1 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 4 | 2 | 2 | 2 | 1 | 2 | 3 | 2 | 1 | 3 | 2 | 2 | 1 | 2 | 1 | 2 | 2 | 3 | 1 | 1 | 1 | 2 | 67 |
Irr. rational chars. | 2 | 2 | 2 | 2 | 1 | 2 | 1 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 4 | 2 | 2 | 2 | 1 | 2 | 3 | 2 | 1 | 3 | 2 | 2 | 1 | 2 | 1 | 2 | 2 | 3 | 1 | 1 | 1 | 2 | 67 |
Minimal presentations
Permutation degree: | $120$ |
Transitive degree: | not computed |
Rank: | $2$ |
Inequivalent generating pairs: | not computed |
Minimal degrees of faithful linear representations
Over $\mathbb{C}$ | Over $\mathbb{R}$ | Over $\mathbb{Q}$ | |
---|---|---|---|
Irreducible | 28 | 28 | 28 |
Arbitrary | not computed | not computed | not computed |
Constructions
Groups of Lie type: | $\SOPlus(8,2)$, $\PSOPlus(8,2)$, $\PGOPlus(8,2)$, $\CSOPlus(8,2)$, $\COPlus(8,2)$ | |||||||
Permutation group: | Degree $120$
$\langle(1,2,5,11)(3,8,17,30)(4,7,13,22)(6,14)(9,19,35,59)(10,20,36,31)(12,23)(15,27,47,77) \!\cdots\! \rangle$
| |||||||
| ||||||||
Direct product: | not computed | |||||||
Semidirect product: | not computed | |||||||
Trans. wreath product: | not isomorphic to a non-trivial transitive wreath product |
Elements of the group are displayed as matrices in $\SOPlus(8,2)$.
Homology
Abelianization: | $C_{2} $ |
|
Schur multiplier: | not computed |
|
Commutator length: | $1$ |
|
Subgroups
Subgroup data has not been computed.
Character theory
Complex character table
Every character has rational values, so the complex character table is the same as the rational character table below.
Rational character table
See the $67 \times 67$ rational character table. Alternatively, you may search for characters of this group with desired properties.