Properties

Label 3359232.el
Order \( 2^{9} \cdot 3^{8} \)
Exponent \( 2^{4} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{4} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{12} \cdot 3^{8} \)
$\card{\mathrm{Out}(G)}$ \( 2^{3} \)
Perm deg. $24$
Trans deg. $24$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 24 | (1,12,2,10)(3,11)(4,9,5,7)(6,8)(13,17)(14,16)(15,18)(20,21)(22,24,23), (1,20,10,17,4,22,7,15,3,19,12,18,6,23,8,14)(2,21,11,16,5,24,9,13), (1,24,6,21,2,22,5,20)(3,23,4,19)(7,17,11,14,8,16,12,15)(9,18,10,13) >;
 
Copy content gap:G := Group( (1,12,2,10)(3,11)(4,9,5,7)(6,8)(13,17)(14,16)(15,18)(20,21)(22,24,23), (1,20,10,17,4,22,7,15,3,19,12,18,6,23,8,14)(2,21,11,16,5,24,9,13), (1,24,6,21,2,22,5,20)(3,23,4,19)(7,17,11,14,8,16,12,15)(9,18,10,13) );
 
Copy content sage:G = PermutationGroup(['(1,12,2,10)(3,11)(4,9,5,7)(6,8)(13,17)(14,16)(15,18)(20,21)(22,24,23)', '(1,20,10,17,4,22,7,15,3,19,12,18,6,23,8,14)(2,21,11,16,5,24,9,13)', '(1,24,6,21,2,22,5,20)(3,23,4,19)(7,17,11,14,8,16,12,15)(9,18,10,13)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(49000581110736790126411230523001595572448592374209753862873657501370348813768016196059549167955428158589820600690825409158624047652851705135545183137077481075020805220236590205402994273891165320913418001214758079735494586297443804928878199925075302450744437751784907874257123013804968941041525604523304267557214669809481294435532241992631745415041682188966221096592836924692430714686601911746477493713820261835322548701977943337122536271649019135864963021528032957571249266498687464478694015252435618060208219683230590132470843877505046031177470670766075620481892584408462891768325242923599865778119535734088513312881352034288937681732859213131974863758180904405606917358092024127815935,3359232)'); a = G.1; b = G.3; c = G.4; d = G.7; e = G.11; f = G.12; g = G.13; h = G.14; i = G.15; j = G.16; k = G.17;
 

Group information

Description:$C_3^8:(C_8^2:(C_2\times C_4))$
Order: \(3359232\)\(\medspace = 2^{9} \cdot 3^{8} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_3^8:C_2^3.D_4^2:D_4$, of order \(26873856\)\(\medspace = 2^{12} \cdot 3^{8} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 9, $C_3$ x 8
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 12 16 24
Elements 1 13527 6560 259848 557280 904608 632448 839808 145152 3359232
Conjugacy classes   1 7 30 12 48 14 19 4 12 147
Divisions 1 7 30 10 48 12 15 2 8 133
Autjugacy classes 1 7 17 8 28 8 8 1 5 83

Minimal presentations

Permutation degree:$24$
Transitive degree:$24$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 16 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k \mid d^{24}=e^{3}=f^{3}=g^{3}=h^{3}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([17, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 34, 11118018, 140925446, 64795009, 10846308, 169149187, 31405412, 56985533, 190, 112270724, 4439741, 3830818, 242, 7494149, 155994742, 21164631, 9033210, 356435470, 42577271, 29007480, 4806705, 1093446, 12153561, 346, 121862535, 152676888, 50896681, 17723578, 4601227, 6191356, 398, 463519016, 187242649, 74448618, 16935323, 6739420, 13555893, 450, 228741129, 260858906, 127448363, 65214780, 15939277, 5534, 105605642, 41888027, 57231020, 35126141, 1077198, 17494319, 408520, 655377, 1098584, 251719691, 77813788, 117974061, 77487422, 1109839, 9547296, 896081, 1344082, 2386947, 331422220, 73831709, 53209774, 9833730, 986675, 24016, 774273037, 187536414, 180133679, 91483456, 23015633, 616994, 10836494, 259096351, 86659248, 5416316, 4590133, 248010, 644374543, 36835360, 34781233, 77796418, 38985299, 19740772, 6051573, 4308614, 1233943, 751381520, 28483873, 208745906, 40487811, 47960212, 7116437, 2746774, 2289015, 515150]); a,b,c,d,e,f,g,h,i,j,k := Explode([G.1, G.3, G.4, G.7, G.11, G.12, G.13, G.14, G.15, G.16, G.17]); AssignNames(~G, ["a", "a2", "b", "c", "c2", "c4", "d", "d2", "d4", "d8", "e", "f", "g", "h", "i", "j", "k"]);
 
Copy content gap:G := PcGroupCode(49000581110736790126411230523001595572448592374209753862873657501370348813768016196059549167955428158589820600690825409158624047652851705135545183137077481075020805220236590205402994273891165320913418001214758079735494586297443804928878199925075302450744437751784907874257123013804968941041525604523304267557214669809481294435532241992631745415041682188966221096592836924692430714686601911746477493713820261835322548701977943337122536271649019135864963021528032957571249266498687464478694015252435618060208219683230590132470843877505046031177470670766075620481892584408462891768325242923599865778119535734088513312881352034288937681732859213131974863758180904405606917358092024127815935,3359232); a := G.1; b := G.3; c := G.4; d := G.7; e := G.11; f := G.12; g := G.13; h := G.14; i := G.15; j := G.16; k := G.17;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(49000581110736790126411230523001595572448592374209753862873657501370348813768016196059549167955428158589820600690825409158624047652851705135545183137077481075020805220236590205402994273891165320913418001214758079735494586297443804928878199925075302450744437751784907874257123013804968941041525604523304267557214669809481294435532241992631745415041682188966221096592836924692430714686601911746477493713820261835322548701977943337122536271649019135864963021528032957571249266498687464478694015252435618060208219683230590132470843877505046031177470670766075620481892584408462891768325242923599865778119535734088513312881352034288937681732859213131974863758180904405606917358092024127815935,3359232)'); a = G.1; b = G.3; c = G.4; d = G.7; e = G.11; f = G.12; g = G.13; h = G.14; i = G.15; j = G.16; k = G.17;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(49000581110736790126411230523001595572448592374209753862873657501370348813768016196059549167955428158589820600690825409158624047652851705135545183137077481075020805220236590205402994273891165320913418001214758079735494586297443804928878199925075302450744437751784907874257123013804968941041525604523304267557214669809481294435532241992631745415041682188966221096592836924692430714686601911746477493713820261835322548701977943337122536271649019135864963021528032957571249266498687464478694015252435618060208219683230590132470843877505046031177470670766075620481892584408462891768325242923599865778119535734088513312881352034288937681732859213131974863758180904405606917358092024127815935,3359232)'); a = G.1; b = G.3; c = G.4; d = G.7; e = G.11; f = G.12; g = G.13; h = G.14; i = G.15; j = G.16; k = G.17;
 
Permutation group:Degree $24$ $\langle(1,12,2,10)(3,11)(4,9,5,7)(6,8)(13,17)(14,16)(15,18)(20,21)(22,24,23), (1,20,10,17,4,22,7,15,3,19,12,18,6,23,8,14) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 24 | (1,12,2,10)(3,11)(4,9,5,7)(6,8)(13,17)(14,16)(15,18)(20,21)(22,24,23), (1,20,10,17,4,22,7,15,3,19,12,18,6,23,8,14)(2,21,11,16,5,24,9,13), (1,24,6,21,2,22,5,20)(3,23,4,19)(7,17,11,14,8,16,12,15)(9,18,10,13) >;
 
Copy content gap:G := Group( (1,12,2,10)(3,11)(4,9,5,7)(6,8)(13,17)(14,16)(15,18)(20,21)(22,24,23), (1,20,10,17,4,22,7,15,3,19,12,18,6,23,8,14)(2,21,11,16,5,24,9,13), (1,24,6,21,2,22,5,20)(3,23,4,19)(7,17,11,14,8,16,12,15)(9,18,10,13) );
 
Copy content sage:G = PermutationGroup(['(1,12,2,10)(3,11)(4,9,5,7)(6,8)(13,17)(14,16)(15,18)(20,21)(22,24,23)', '(1,20,10,17,4,22,7,15,3,19,12,18,6,23,8,14)(2,21,11,16,5,24,9,13)', '(1,24,6,21,2,22,5,20)(3,23,4,19)(7,17,11,14,8,16,12,15)(9,18,10,13)'])
 
Transitive group: 24T23010 36T48126 36T48755 36T49058 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_3^8:C_2^3.Q_8)$ . $D_4$ (2) $(C_3^8.C_4.C_4^2)$ . $D_4$ (2) $(C_3^8:C_2^3)$ . $(D_4:D_4)$ $(C_3^7.D_6)$ . $(C_2^4.D_4)$ all 30

Elements of the group are displayed as permutations of degree 24.

Homology

Abelianization: $C_{2}^{2} \times C_{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{3}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 61 normal subgroups (39 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_8^2:(C_2\times C_4)$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^8$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 8 larger groups in the database.

This group is a maximal quotient of 1 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $147 \times 147$ character table is not available for this group.

Rational character table

The $133 \times 133$ rational character table is not available for this group.