Properties

Label 331776.bo
Order \( 2^{12} \cdot 3^{4} \)
Exponent \( 2^{3} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \)
$\card{Z(G)}$ \( 2 \)
$\card{\Aut(G)}$ \( 2^{15} \cdot 3^{4} \)
$\card{\mathrm{Out}(G)}$ \( 2^{4} \)
Perm deg. $20$
Trans deg. $24$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 20 | (1,2,4,6,9,13)(3,5,8,11,7,10)(12,14)(15,16), (1,3,4,7,9,8,12,15)(2,5)(6,10)(11,13,16,14)(17,18,19,20) >;
 
Copy content gap:G := Group( (1,2,4,6,9,13)(3,5,8,11,7,10)(12,14)(15,16), (1,3,4,7,9,8,12,15)(2,5)(6,10)(11,13,16,14)(17,18,19,20) );
 
Copy content sage:G = PermutationGroup(['(1,2,4,6,9,13)(3,5,8,11,7,10)(12,14)(15,16)', '(1,3,4,7,9,8,12,15)(2,5)(6,10)(11,13,16,14)(17,18,19,20)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(62378923932311784639706935240605816158656743182201912416205789556520067930831467066258007510833504224354150021048484929189931611823597511763646121576238777913195589176067656400857978775855001380560621359321991560118300578771724737254613387409279195095577356934533344205018313195641954195571438100821590520306942590104225332097225505943029805521144273525724126350421310839014219320117057873299935967509238398736282275365447994087826694546871666142535590532185841116555246875376234762273768027763918292510976948841461352486187909975360,331776)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.7; f = G.9; g = G.11; h = G.12; i = G.13; j = G.14; k = G.15; l = G.16;
 

Group information

Description:$C_2^9.C_3^4:D_4$
Order: \(331776\)\(\medspace = 2^{12} \cdot 3^{4} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_2^8.C_3^4.D_4.C_2^4$, of order \(2654208\)\(\medspace = 2^{15} \cdot 3^{4} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 12, $C_3$ x 4
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 12
Elements 1 3679 6560 77472 80480 62208 101376 331776
Conjugacy classes   1 17 14 28 66 6 16 148
Divisions 1 17 14 23 66 3 10 134
Autjugacy classes 1 16 7 18 37 2 4 85

Minimal presentations

Permutation degree:$20$
Transitive degree:$24$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 12 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l \mid c^{6}=d^{3}=e^{6}=f^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([16, 2, 2, 2, 2, 3, 3, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 32, 3525137, 12253634, 5874930, 2363938, 19606275, 6240531, 708771, 179, 20140804, 10784020, 5340196, 387077, 10849557, 2552869, 2712437, 1959909, 3598342, 12378262, 5306150, 2544246, 1398166, 526598, 326, 40462343, 2691095, 847911, 755767, 582983, 35456264, 684312, 6423016, 1941464, 1364760, 983752, 424, 40053769, 3594265, 345641, 46137, 432073, 39688714, 1824810, 228154, 456266, 50794, 28634, 8586, 4906, 63203339, 1990683, 1493035, 995387, 248907, 41579, 13947, 22104588, 1078300, 1213116, 404428, 15084, 22588, 96781, 5225501, 290349, 580669, 653261, 72685, 4157, 12237, 829, 21772814, 37946910, 5158126, 8488862, 3505758, 429934, 190190, 77886, 23998479, 25878559, 11943983, 6234687, 1451599, 1451615, 405615, 179839, 61583, 25503]); a,b,c,d,e,f,g,h,i,j,k,l := Explode([G.1, G.3, G.4, G.6, G.7, G.9, G.11, G.12, G.13, G.14, G.15, G.16]); AssignNames(~G, ["a", "a2", "b", "c", "c2", "d", "e", "e2", "f", "f2", "g", "h", "i", "j", "k", "l"]);
 
Copy content gap:G := PcGroupCode(62378923932311784639706935240605816158656743182201912416205789556520067930831467066258007510833504224354150021048484929189931611823597511763646121576238777913195589176067656400857978775855001380560621359321991560118300578771724737254613387409279195095577356934533344205018313195641954195571438100821590520306942590104225332097225505943029805521144273525724126350421310839014219320117057873299935967509238398736282275365447994087826694546871666142535590532185841116555246875376234762273768027763918292510976948841461352486187909975360,331776); a := G.1; b := G.3; c := G.4; d := G.6; e := G.7; f := G.9; g := G.11; h := G.12; i := G.13; j := G.14; k := G.15; l := G.16;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(62378923932311784639706935240605816158656743182201912416205789556520067930831467066258007510833504224354150021048484929189931611823597511763646121576238777913195589176067656400857978775855001380560621359321991560118300578771724737254613387409279195095577356934533344205018313195641954195571438100821590520306942590104225332097225505943029805521144273525724126350421310839014219320117057873299935967509238398736282275365447994087826694546871666142535590532185841116555246875376234762273768027763918292510976948841461352486187909975360,331776)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.7; f = G.9; g = G.11; h = G.12; i = G.13; j = G.14; k = G.15; l = G.16;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(62378923932311784639706935240605816158656743182201912416205789556520067930831467066258007510833504224354150021048484929189931611823597511763646121576238777913195589176067656400857978775855001380560621359321991560118300578771724737254613387409279195095577356934533344205018313195641954195571438100821590520306942590104225332097225505943029805521144273525724126350421310839014219320117057873299935967509238398736282275365447994087826694546871666142535590532185841116555246875376234762273768027763918292510976948841461352486187909975360,331776)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.7; f = G.9; g = G.11; h = G.12; i = G.13; j = G.14; k = G.15; l = G.16;
 
Permutation group:Degree $20$ $\langle(1,2,4,6,9,13)(3,5,8,11,7,10)(12,14)(15,16), (1,3,4,7,9,8,12,15)(2,5)(6,10)(11,13,16,14)(17,18,19,20)\rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 20 | (1,2,4,6,9,13)(3,5,8,11,7,10)(12,14)(15,16), (1,3,4,7,9,8,12,15)(2,5)(6,10)(11,13,16,14)(17,18,19,20) >;
 
Copy content gap:G := Group( (1,2,4,6,9,13)(3,5,8,11,7,10)(12,14)(15,16), (1,3,4,7,9,8,12,15)(2,5)(6,10)(11,13,16,14)(17,18,19,20) );
 
Copy content sage:G = PermutationGroup(['(1,2,4,6,9,13)(3,5,8,11,7,10)(12,14)(15,16)', '(1,3,4,7,9,8,12,15)(2,5)(6,10)(11,13,16,14)(17,18,19,20)'])
 
Transitive group: 24T19554 24T19555 36T28091 36T28094 all 5
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_2^9$ . $(C_3^4:D_4)$ $(C_2\times C_2^8.C_3^4)$ . $D_4$ (2) $C_2$ . $(C_2^8.C_3^4:D_4)$ $(C_2^9.C_3^4:C_4)$ . $C_2$ all 13

Elements of the group are displayed as permutations of degree 20.

Homology

Abelianization: $C_{2} \times C_{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{2} \times C_{6}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 23 normal subgroups (13 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_2$ $G/Z \simeq$ $C_2^8.C_3^4:D_4$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_2^8.C_3^4.C_2$ $G/G' \simeq$ $C_2\times C_4$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_2$ $G/\Phi \simeq$ $C_2^8.C_3^4:D_4$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_2^9$ $G/\operatorname{Fit} \simeq$ $C_3^4:D_4$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_2^9.C_3^4:D_4$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_2^9$ $G/\operatorname{soc} \simeq$ $C_3^4:D_4$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^6.C_2^5.C_2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^4$

Subgroup diagram and profile

Series

Derived series $C_2^9.C_3^4:D_4$ $\rhd$ $C_2^8.C_3^4.C_2$ $\rhd$ $C_2^8.C_3^4$ $\rhd$ $C_2^8$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_2^9.C_3^4:D_4$ $\rhd$ $A_4^2\wr C_2.C_2^2$ $\rhd$ $C_2\times C_2^8.C_3^4.C_2$ $\rhd$ $C_2^8.C_3^4.C_2$ $\rhd$ $C_2^8.C_3^4$ $\rhd$ $C_2^4:A_4^2$ $\rhd$ $C_2^8$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_2^9.C_3^4:D_4$ $\rhd$ $C_2^8.C_3^4.C_2$ $\rhd$ $C_2^8.C_3^4$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_2$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 17 larger groups in the database.

This group is a maximal quotient of 5 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $148 \times 148$ character table is not available for this group.

Rational character table

The $134 \times 134$ rational character table is not available for this group.