Properties

Label 3265173504.dz
Order \( 2^{11} \cdot 3^{13} \)
Exponent \( 2^{3} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{4} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{13} \cdot 3^{13} \)
$\card{\mathrm{Out}(G)}$ \( 2^{2} \)
Perm deg. $36$
Trans deg. $36$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,33,2,31,3,32)(4,11)(5,12)(6,10)(7,26)(8,25)(9,27)(13,20,14,19,15,21)(16,35,17,36,18,34)(22,28,24,29,23,30), (1,24,8,30,15,34,20,6,25,10,32,16,3,22,7,28,13,36,21,5,26,11,33,18,2,23,9,29,14,35,19,4,27,12,31,17), (1,32)(2,31)(3,33)(4,11,6,10)(5,12)(7,25,8,26)(9,27)(13,19)(14,20,15,21)(16,35,18,36)(17,34)(22,29,23,28,24,30) >;
 
Copy content gap:G := Group( (1,33,2,31,3,32)(4,11)(5,12)(6,10)(7,26)(8,25)(9,27)(13,20,14,19,15,21)(16,35,17,36,18,34)(22,28,24,29,23,30), (1,24,8,30,15,34,20,6,25,10,32,16,3,22,7,28,13,36,21,5,26,11,33,18,2,23,9,29,14,35,19,4,27,12,31,17), (1,32)(2,31)(3,33)(4,11,6,10)(5,12)(7,25,8,26)(9,27)(13,19)(14,20,15,21)(16,35,18,36)(17,34)(22,29,23,28,24,30) );
 
Copy content sage:G = PermutationGroup(['(1,33,2,31,3,32)(4,11)(5,12)(6,10)(7,26)(8,25)(9,27)(13,20,14,19,15,21)(16,35,17,36,18,34)(22,28,24,29,23,30)', '(1,24,8,30,15,34,20,6,25,10,32,16,3,22,7,28,13,36,21,5,26,11,33,18,2,23,9,29,14,35,19,4,27,12,31,17)', '(1,32)(2,31)(3,33)(4,11,6,10)(5,12)(7,25,8,26)(9,27)(13,19)(14,20,15,21)(16,35,18,36)(17,34)(22,29,23,28,24,30)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(70317944608021192090498633925645806825942256263026038316382772391014090023934767438260460281822239129179108129847141573429651190147281321308106612872087796482559948124080539739759332656058211604054772594503884019912750893611987016859418731072756851749139569699748254418983167622611435367008708089735053639412371462136288616766224107363526146347759345945927089975823401160880745623226187884704814661273019616511899949194375619695616934479201657823427155617655920828344229151837778072340785308515734303846614889881288740623762685298509590738824189078378170719040627015644368646438829782090307835365204868764516885271568708454007445929877445023170690814989330681894034121099959213166387439781443130847342899100508464630400693977482929687985215377700236828941865228585528221638333345937451059479715479164048787586630306521228062704072212394120174039140577043318439377025088808197325053352519151313956981974039739691108520548724512518703851777944630725347195437093704688716675230919494630018050054435186493450406797122423516487833389149858226948320184583790402721646021302688800150134339869243651070016052611906898746846871953390164090922782434354730315329967823658219581910605387088201666605587398865675123414278526307687180776443651717344372475409497915235601222061006855317811133212674178872281314252124017176942837159476096257140832018822259075250889069126109250019310421932271138932549896327411596245830810359243567738213842684142404765390534771716323494340143232224011391007811717826110213529619480028911934912588879182521503833314504428389786536505214658133699858333732054266721279415416429512023056407237834536084780486245897085714126418515975821513172686336284145856129642604215810475339456785468164922819867347696998407168861289951068379093162241142055179338194468031496076397936536966438377540334599218513926577429950032991308077023337717229574849069856394875136605037634414794111,3265173504)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.7; f = G.9; g = G.11; h = G.13; i = G.15; j = G.17; k = G.19; l = G.20; m = G.21; n = G.22; o = G.23; p = G.24;
 

Group information

Description:$C_3^{12}.C_2^6.D_6.D_4$
Order: \(3265173504\)\(\medspace = 2^{11} \cdot 3^{13} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(13060694016\)\(\medspace = 2^{13} \cdot 3^{13} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 11, $C_3$ x 13
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 9 12 18 24 36
Elements 1 1699839 1371248 87899904 383240592 136048896 67184640 1590036480 362797056 272097792 362797056 3265173504
Conjugacy classes   1 36 302 45 1960 4 9 314 10 4 4 2689
Divisions 1 36 302 37 1960 2 9 276 10 2 2 2637
Autjugacy classes 1 31 199 24 1220 1 6 149 6 1 1 1639

Minimal presentations

Permutation degree:$36$
Transitive degree:$36$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p \mid e^{6}=f^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([24, 2, 2, 2, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 48, 75614808217, 152887290914, 1931543594, 46488069554, 201842925315, 20036045211, 50576990835, 267, 94032975364, 156402277468, 62384729332, 1101454660, 139815161861, 78318009245, 76897888757, 23874468845, 3189161477, 9437202557, 345255531270, 216271911774, 104170121046, 7583941086, 7550962878, 11010071310, 486, 328843173895, 311020204063, 35473545271, 35437658191, 8922120295, 1272030847, 71995060232, 223147099616, 160843408184, 84997550960, 42505144088, 127663904, 36958184, 632, 6449725449, 1074954273, 17482947897, 404352081, 250179945, 11649, 5913, 851833648522, 356173291618, 202550046394, 95765326354, 37613433634, 17294942146, 4208494906, 437264962, 255226, 778, 99473080331, 78256668707, 128994508859, 58531299923, 17253762155, 164270723, 4499867, 6849995, 938168434956, 49926449700, 970579644, 39126453060, 38825125668, 19974045444, 5868293340, 22273236, 56364, 1267596, 618972, 924, 72236924941, 39170202661, 1525837885, 9918236245, 62729965, 94639237, 290461, 48589, 1314685, 548097390734, 68513713958, 290450551742, 141090549926, 30349273430, 519747974, 952249118, 596497142, 8476046, 168734, 162278, 477662, 1070, 9844457487, 5828640807, 142753923159, 8778793071, 111476871, 108490911, 18081999, 258351, 1203171417232, 195631822120, 310795201216, 63642523912, 39378424072, 26732395144, 6507019168, 677351992, 2644048, 543760, 139864, 100720, 23632, 1216, 154793410577, 78364164137, 177044963393, 1451188313, 5925685361, 13437089, 2239697, 10721, 6240706578, 3802733610, 3073075266, 16608800538, 10212065394, 85100682, 42550434, 197298, 33186, 5874, 2149908499, 3284582443, 3284582467, 19080437851, 44789875, 134369443, 22395091, 17683, 286941312020, 812686307372, 93526368836, 470292572, 9601810964, 1457906852, 11757572, 6749876, 326948, 54836, 357099899925, 433261965357, 48355439685, 19641828189, 2767267125, 1428793485, 541956261, 135489237, 39688965, 2851509, 1083813, 171477, 14880153622, 87770013742, 30286835782, 1888634974, 56556030070, 8344332430, 4172166310, 536950, 229778104343, 67962986543, 42222809159, 54536025695, 108158319479, 21821571215, 13060694183, 1115265239, 426995975, 70917431, 6656615, 1680023]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p := Explode([G.1, G.3, G.4, G.6, G.7, G.9, G.11, G.13, G.15, G.17, G.19, G.20, G.21, G.22, G.23, G.24]); AssignNames(~G, ["a", "a2", "b", "c", "c2", "d", "e", "e2", "f", "f2", "g", "g2", "h", "h2", "i", "i2", "j", "j2", "k", "l", "m", "n", "o", "p"]);
 
Copy content gap:G := PcGroupCode(70317944608021192090498633925645806825942256263026038316382772391014090023934767438260460281822239129179108129847141573429651190147281321308106612872087796482559948124080539739759332656058211604054772594503884019912750893611987016859418731072756851749139569699748254418983167622611435367008708089735053639412371462136288616766224107363526146347759345945927089975823401160880745623226187884704814661273019616511899949194375619695616934479201657823427155617655920828344229151837778072340785308515734303846614889881288740623762685298509590738824189078378170719040627015644368646438829782090307835365204868764516885271568708454007445929877445023170690814989330681894034121099959213166387439781443130847342899100508464630400693977482929687985215377700236828941865228585528221638333345937451059479715479164048787586630306521228062704072212394120174039140577043318439377025088808197325053352519151313956981974039739691108520548724512518703851777944630725347195437093704688716675230919494630018050054435186493450406797122423516487833389149858226948320184583790402721646021302688800150134339869243651070016052611906898746846871953390164090922782434354730315329967823658219581910605387088201666605587398865675123414278526307687180776443651717344372475409497915235601222061006855317811133212674178872281314252124017176942837159476096257140832018822259075250889069126109250019310421932271138932549896327411596245830810359243567738213842684142404765390534771716323494340143232224011391007811717826110213529619480028911934912588879182521503833314504428389786536505214658133699858333732054266721279415416429512023056407237834536084780486245897085714126418515975821513172686336284145856129642604215810475339456785468164922819867347696998407168861289951068379093162241142055179338194468031496076397936536966438377540334599218513926577429950032991308077023337717229574849069856394875136605037634414794111,3265173504); a := G.1; b := G.3; c := G.4; d := G.6; e := G.7; f := G.9; g := G.11; h := G.13; i := G.15; j := G.17; k := G.19; l := G.20; m := G.21; n := G.22; o := G.23; p := G.24;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(70317944608021192090498633925645806825942256263026038316382772391014090023934767438260460281822239129179108129847141573429651190147281321308106612872087796482559948124080539739759332656058211604054772594503884019912750893611987016859418731072756851749139569699748254418983167622611435367008708089735053639412371462136288616766224107363526146347759345945927089975823401160880745623226187884704814661273019616511899949194375619695616934479201657823427155617655920828344229151837778072340785308515734303846614889881288740623762685298509590738824189078378170719040627015644368646438829782090307835365204868764516885271568708454007445929877445023170690814989330681894034121099959213166387439781443130847342899100508464630400693977482929687985215377700236828941865228585528221638333345937451059479715479164048787586630306521228062704072212394120174039140577043318439377025088808197325053352519151313956981974039739691108520548724512518703851777944630725347195437093704688716675230919494630018050054435186493450406797122423516487833389149858226948320184583790402721646021302688800150134339869243651070016052611906898746846871953390164090922782434354730315329967823658219581910605387088201666605587398865675123414278526307687180776443651717344372475409497915235601222061006855317811133212674178872281314252124017176942837159476096257140832018822259075250889069126109250019310421932271138932549896327411596245830810359243567738213842684142404765390534771716323494340143232224011391007811717826110213529619480028911934912588879182521503833314504428389786536505214658133699858333732054266721279415416429512023056407237834536084780486245897085714126418515975821513172686336284145856129642604215810475339456785468164922819867347696998407168861289951068379093162241142055179338194468031496076397936536966438377540334599218513926577429950032991308077023337717229574849069856394875136605037634414794111,3265173504)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.7; f = G.9; g = G.11; h = G.13; i = G.15; j = G.17; k = G.19; l = G.20; m = G.21; n = G.22; o = G.23; p = G.24;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(70317944608021192090498633925645806825942256263026038316382772391014090023934767438260460281822239129179108129847141573429651190147281321308106612872087796482559948124080539739759332656058211604054772594503884019912750893611987016859418731072756851749139569699748254418983167622611435367008708089735053639412371462136288616766224107363526146347759345945927089975823401160880745623226187884704814661273019616511899949194375619695616934479201657823427155617655920828344229151837778072340785308515734303846614889881288740623762685298509590738824189078378170719040627015644368646438829782090307835365204868764516885271568708454007445929877445023170690814989330681894034121099959213166387439781443130847342899100508464630400693977482929687985215377700236828941865228585528221638333345937451059479715479164048787586630306521228062704072212394120174039140577043318439377025088808197325053352519151313956981974039739691108520548724512518703851777944630725347195437093704688716675230919494630018050054435186493450406797122423516487833389149858226948320184583790402721646021302688800150134339869243651070016052611906898746846871953390164090922782434354730315329967823658219581910605387088201666605587398865675123414278526307687180776443651717344372475409497915235601222061006855317811133212674178872281314252124017176942837159476096257140832018822259075250889069126109250019310421932271138932549896327411596245830810359243567738213842684142404765390534771716323494340143232224011391007811717826110213529619480028911934912588879182521503833314504428389786536505214658133699858333732054266721279415416429512023056407237834536084780486245897085714126418515975821513172686336284145856129642604215810475339456785468164922819867347696998407168861289951068379093162241142055179338194468031496076397936536966438377540334599218513926577429950032991308077023337717229574849069856394875136605037634414794111,3265173504)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.7; f = G.9; g = G.11; h = G.13; i = G.15; j = G.17; k = G.19; l = G.20; m = G.21; n = G.22; o = G.23; p = G.24;
 
Permutation group:Degree $36$ $\langle(1,33,2,31,3,32)(4,11)(5,12)(6,10)(7,26)(8,25)(9,27)(13,20,14,19,15,21) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,33,2,31,3,32)(4,11)(5,12)(6,10)(7,26)(8,25)(9,27)(13,20,14,19,15,21)(16,35,17,36,18,34)(22,28,24,29,23,30), (1,24,8,30,15,34,20,6,25,10,32,16,3,22,7,28,13,36,21,5,26,11,33,18,2,23,9,29,14,35,19,4,27,12,31,17), (1,32)(2,31)(3,33)(4,11,6,10)(5,12)(7,25,8,26)(9,27)(13,19)(14,20,15,21)(16,35,18,36)(17,34)(22,29,23,28,24,30) >;
 
Copy content gap:G := Group( (1,33,2,31,3,32)(4,11)(5,12)(6,10)(7,26)(8,25)(9,27)(13,20,14,19,15,21)(16,35,17,36,18,34)(22,28,24,29,23,30), (1,24,8,30,15,34,20,6,25,10,32,16,3,22,7,28,13,36,21,5,26,11,33,18,2,23,9,29,14,35,19,4,27,12,31,17), (1,32)(2,31)(3,33)(4,11,6,10)(5,12)(7,25,8,26)(9,27)(13,19)(14,20,15,21)(16,35,18,36)(17,34)(22,29,23,28,24,30) );
 
Copy content sage:G = PermutationGroup(['(1,33,2,31,3,32)(4,11)(5,12)(6,10)(7,26)(8,25)(9,27)(13,20,14,19,15,21)(16,35,17,36,18,34)(22,28,24,29,23,30)', '(1,24,8,30,15,34,20,6,25,10,32,16,3,22,7,28,13,36,21,5,26,11,33,18,2,23,9,29,14,35,19,4,27,12,31,17)', '(1,32)(2,31)(3,33)(4,11,6,10)(5,12)(7,25,8,26)(9,27)(13,19)(14,20,15,21)(16,35,18,36)(17,34)(22,29,23,28,24,30)'])
 
Transitive group: 36T100218 36T100309 36T101593 36T101823 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_3^{12}.C_2^6.D_6)$ . $D_4$ (2) $(C_3^{12}.C_2^6.D_6)$ . $D_4$ (2) $(C_3^{12}.C_2^5)$ . $(D_4\times S_4)$ (2) $(C_3^{12}.C_2^6.C_2^4)$ . $S_3$ all 51

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2}^{2} \times C_{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 72 normal subgroups (46 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $C_3^{12}.C_2^6.C_6$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^6.C_2^4.C_2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^{12}.C_3$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 6 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $2689 \times 2689$ character table is not available for this group.

Rational character table

The $2637 \times 2637$ rational character table is not available for this group.