Properties

Label 3265173504.bhg
Order \( 2^{11} \cdot 3^{13} \)
Exponent \( 2^{2} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{14} \cdot 3^{13} \)
$\card{\mathrm{Out}(G)}$ \( 2^{3} \)
Perm deg. not computed
Trans deg. $36$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,8,2,7)(3,9)(4,34,5,35)(6,36)(10,20,12,21)(11,19)(13,18)(14,17,15,16)(22,26)(23,27)(24,25)(28,31,30,32,29,33), (1,18,34,19)(2,17,35,20)(3,16,36,21)(4,11,7,15,6,12,9,14,5,10,8,13)(22,24,23)(25,26,27)(28,31,30,33,29,32), (1,27,36,24,2,25,35,23,3,26,34,22)(4,28,7,31,5,29,9,33,6,30,8,32)(10,18)(11,16,12,17)(13,20,14,21)(15,19) >;
 
Copy content gap:G := Group( (1,8,2,7)(3,9)(4,34,5,35)(6,36)(10,20,12,21)(11,19)(13,18)(14,17,15,16)(22,26)(23,27)(24,25)(28,31,30,32,29,33), (1,18,34,19)(2,17,35,20)(3,16,36,21)(4,11,7,15,6,12,9,14,5,10,8,13)(22,24,23)(25,26,27)(28,31,30,33,29,32), (1,27,36,24,2,25,35,23,3,26,34,22)(4,28,7,31,5,29,9,33,6,30,8,32)(10,18)(11,16,12,17)(13,20,14,21)(15,19) );
 
Copy content sage:G = PermutationGroup(['(1,8,2,7)(3,9)(4,34,5,35)(6,36)(10,20,12,21)(11,19)(13,18)(14,17,15,16)(22,26)(23,27)(24,25)(28,31,30,32,29,33)', '(1,18,34,19)(2,17,35,20)(3,16,36,21)(4,11,7,15,6,12,9,14,5,10,8,13)(22,24,23)(25,26,27)(28,31,30,33,29,32)', '(1,27,36,24,2,25,35,23,3,26,34,22)(4,28,7,31,5,29,9,33,6,30,8,32)(10,18)(11,16,12,17)(13,20,14,21)(15,19)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(9312770990176303025030193909596560884168757564630778714246927152085951728271191446207149214032418766050119348003981510006460955311674460519299541717687318154472997316173933501240807461770619930563152121633008004146297044952985276776171016177893853990851578472577184330790549870823670424728440315951801820175834981295517971909840558598637652385579498388746390530662721070187007832879588833734072817942066775735105533358331683335108067891914609655693744794929146064656937717007421955255266243372417121396017214081964725131840846427229753531732941128599988806282041243022106873439289106268602222162121878744576450073914271027142405080352439057315167890212537089895904701864729725746664913233259846887109027109425555931913216356965920496449604728422385759512503618793666321505405216570466669982105568315884186529890289535393517660243382195793399999832583107661318182583109052435993541682029551949234321189844825607134321807182491382334622779886083578848945410482743074425328779630448751564993186867545431648385953167295074908720114650454634164715765494169672613601332860249346299891095751371019999341642205970324119359016857380573483918198643874622422569186660626917432689253798731963094144444047292339907137679855296236701285941902582868331840048728557308198842398625606073915972867591634085714359193173059880782748191334268283928666290109367456789756956627377124017965810274319744656785705896639708417649830891405360130511460401717556237168143268952784064403464090695769913729519624741351208884586367338713168380517255371942004513427323519302239644942577857242971812435254662330759031768967177382983060565542094198907378905150730656048080132275765004164846003215653821897760509746291774815507746830796494034285254694400524655074707056270342496679049941805048898293639054610370078375734519769018734255632377650009721651463806621489598142546320214556430609908622033247200463424140776880487012681704860211113908135922146719138098778795647619020854986852998021113928206100716605474460129315481170473100576873448156312858142179485939718274525410924002585343,3265173504)'); a = G.1; b = G.2; c = G.5; d = G.6; e = G.8; f = G.10; g = G.12; h = G.14; i = G.16; j = G.18; k = G.19; l = G.20; m = G.21; n = G.22; o = G.23; p = G.24;
 

Group information

Description:$C_3^{12}.C_2^6.C_2^2:D_{12}$
Order: \(3265173504\)\(\medspace = 2^{11} \cdot 3^{13} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(26121388032\)\(\medspace = 2^{14} \cdot 3^{13} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 11, $C_3$ x 13
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 9 12 18 36
Elements 1 1738719 1371248 133832736 434220048 67184640 1901232000 362797056 362797056 3265173504
Conjugacy classes   1 44 365 53 2346 9 1057 10 4 3889
Divisions 1 44 365 49 2346 9 711 10 2 3537
Autjugacy classes 1 27 164 24 1069 5 277 4 1 1572

Minimal presentations

Permutation degree:not computed
Transitive degree:$36$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p \mid e^{6}=f^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([24, 2, 2, 2, 3, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 77335119360, 156514301473, 121, 16651023266, 194, 153281342979, 8241481803, 360914414404, 47599551388, 85280490052, 30704937196, 15963473380, 108614483717, 7518664541, 40878976373, 26764889693, 17178548933, 413, 492581650182, 201532907550, 14331361014, 53163718350, 11133742470, 2030096022, 556133695495, 127576638751, 99446903479, 31246134415, 7657502311, 11515567999, 3427911703, 559, 274220909576, 92403099680, 35859428408, 87237399248, 7413704168, 11596153664, 2681788760, 196129797129, 181265045793, 52650466617, 82148362641, 20892272745, 6699072129, 407062233, 2100869457, 1179879321, 705, 819963758602, 95712731170, 204990939706, 102495393874, 9060944746, 4530472450, 12826, 1365157906, 356871038987, 99101384099, 72515791355, 30919149875, 26820191339, 12396768899, 9332796827, 4782810419, 893934347, 627812003, 64573019, 851, 587891146764, 177630216228, 249256979772, 89475010644, 6328019076, 90012, 788494116, 11426558989, 426680404453, 77848051741, 124263817861, 7820402797, 20929370245, 2759775133, 2191287349, 1274180749, 289784101, 212291101, 61062901, 70762909, 997, 952618475534, 85297259558, 102481493822, 12254492246, 20180690030, 9787288454, 1629849758, 551629622, 161481830, 15090038, 1198168104975, 254637402663, 79691427135, 87091855575, 49850007663, 17339609223, 7567478943, 1027676343, 713899215, 905168103, 86137599, 140908311, 27544623, 1878087, 1307871, 1143, 295433256976, 650597165608, 73816326208, 115106487640, 24763263088, 7703092360, 12375286432, 515901544, 85983832, 10120, 514903080977, 648304902185, 1354185281, 137137287257, 17817366641, 10601736329, 13437089, 2227171001, 193156073, 61866137, 5561, 613404721170, 47568227370, 134288658498, 123544101978, 170201202, 3541128330, 1031844282, 3546090, 54665562, 16794, 1387646484499, 217027952683, 225513492547, 118157045851, 29650821235, 31581757579, 2127513763, 4669332667, 617725675, 102954523, 4925131, 1616059, 333594132500, 339496690220, 293088015428, 75122304860, 1693053044, 2147669132, 9946686116, 7856497340, 35272172, 164965532, 980108, 1595255980053, 145333039149, 256854394437, 52429411677, 8736989301, 33387780237, 7710557349, 8226510525, 181336557, 173391261, 2053197, 684669, 234053369878, 374179373614, 243680108614, 67894675294, 25136013430, 2088944782, 12568006822, 8551796158, 523667182, 239378398, 9777358, 815134, 1328643440663, 125440524335, 270399209543, 182139245663, 8814624887, 6909567119, 4407312551, 7850152127, 183638255, 190024991, 30357839, 2530175]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p := Explode([G.1, G.2, G.5, G.6, G.8, G.10, G.12, G.14, G.16, G.18, G.19, G.20, G.21, G.22, G.23, G.24]); AssignNames(~G, ["a", "b", "b2", "b4", "c", "d", "d2", "e", "e2", "f", "f2", "g", "g2", "h", "h2", "i", "i2", "j", "k", "l", "m", "n", "o", "p"]);
 
Copy content gap:G := PcGroupCode(9312770990176303025030193909596560884168757564630778714246927152085951728271191446207149214032418766050119348003981510006460955311674460519299541717687318154472997316173933501240807461770619930563152121633008004146297044952985276776171016177893853990851578472577184330790549870823670424728440315951801820175834981295517971909840558598637652385579498388746390530662721070187007832879588833734072817942066775735105533358331683335108067891914609655693744794929146064656937717007421955255266243372417121396017214081964725131840846427229753531732941128599988806282041243022106873439289106268602222162121878744576450073914271027142405080352439057315167890212537089895904701864729725746664913233259846887109027109425555931913216356965920496449604728422385759512503618793666321505405216570466669982105568315884186529890289535393517660243382195793399999832583107661318182583109052435993541682029551949234321189844825607134321807182491382334622779886083578848945410482743074425328779630448751564993186867545431648385953167295074908720114650454634164715765494169672613601332860249346299891095751371019999341642205970324119359016857380573483918198643874622422569186660626917432689253798731963094144444047292339907137679855296236701285941902582868331840048728557308198842398625606073915972867591634085714359193173059880782748191334268283928666290109367456789756956627377124017965810274319744656785705896639708417649830891405360130511460401717556237168143268952784064403464090695769913729519624741351208884586367338713168380517255371942004513427323519302239644942577857242971812435254662330759031768967177382983060565542094198907378905150730656048080132275765004164846003215653821897760509746291774815507746830796494034285254694400524655074707056270342496679049941805048898293639054610370078375734519769018734255632377650009721651463806621489598142546320214556430609908622033247200463424140776880487012681704860211113908135922146719138098778795647619020854986852998021113928206100716605474460129315481170473100576873448156312858142179485939718274525410924002585343,3265173504); a := G.1; b := G.2; c := G.5; d := G.6; e := G.8; f := G.10; g := G.12; h := G.14; i := G.16; j := G.18; k := G.19; l := G.20; m := G.21; n := G.22; o := G.23; p := G.24;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(9312770990176303025030193909596560884168757564630778714246927152085951728271191446207149214032418766050119348003981510006460955311674460519299541717687318154472997316173933501240807461770619930563152121633008004146297044952985276776171016177893853990851578472577184330790549870823670424728440315951801820175834981295517971909840558598637652385579498388746390530662721070187007832879588833734072817942066775735105533358331683335108067891914609655693744794929146064656937717007421955255266243372417121396017214081964725131840846427229753531732941128599988806282041243022106873439289106268602222162121878744576450073914271027142405080352439057315167890212537089895904701864729725746664913233259846887109027109425555931913216356965920496449604728422385759512503618793666321505405216570466669982105568315884186529890289535393517660243382195793399999832583107661318182583109052435993541682029551949234321189844825607134321807182491382334622779886083578848945410482743074425328779630448751564993186867545431648385953167295074908720114650454634164715765494169672613601332860249346299891095751371019999341642205970324119359016857380573483918198643874622422569186660626917432689253798731963094144444047292339907137679855296236701285941902582868331840048728557308198842398625606073915972867591634085714359193173059880782748191334268283928666290109367456789756956627377124017965810274319744656785705896639708417649830891405360130511460401717556237168143268952784064403464090695769913729519624741351208884586367338713168380517255371942004513427323519302239644942577857242971812435254662330759031768967177382983060565542094198907378905150730656048080132275765004164846003215653821897760509746291774815507746830796494034285254694400524655074707056270342496679049941805048898293639054610370078375734519769018734255632377650009721651463806621489598142546320214556430609908622033247200463424140776880487012681704860211113908135922146719138098778795647619020854986852998021113928206100716605474460129315481170473100576873448156312858142179485939718274525410924002585343,3265173504)'); a = G.1; b = G.2; c = G.5; d = G.6; e = G.8; f = G.10; g = G.12; h = G.14; i = G.16; j = G.18; k = G.19; l = G.20; m = G.21; n = G.22; o = G.23; p = G.24;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(9312770990176303025030193909596560884168757564630778714246927152085951728271191446207149214032418766050119348003981510006460955311674460519299541717687318154472997316173933501240807461770619930563152121633008004146297044952985276776171016177893853990851578472577184330790549870823670424728440315951801820175834981295517971909840558598637652385579498388746390530662721070187007832879588833734072817942066775735105533358331683335108067891914609655693744794929146064656937717007421955255266243372417121396017214081964725131840846427229753531732941128599988806282041243022106873439289106268602222162121878744576450073914271027142405080352439057315167890212537089895904701864729725746664913233259846887109027109425555931913216356965920496449604728422385759512503618793666321505405216570466669982105568315884186529890289535393517660243382195793399999832583107661318182583109052435993541682029551949234321189844825607134321807182491382334622779886083578848945410482743074425328779630448751564993186867545431648385953167295074908720114650454634164715765494169672613601332860249346299891095751371019999341642205970324119359016857380573483918198643874622422569186660626917432689253798731963094144444047292339907137679855296236701285941902582868331840048728557308198842398625606073915972867591634085714359193173059880782748191334268283928666290109367456789756956627377124017965810274319744656785705896639708417649830891405360130511460401717556237168143268952784064403464090695769913729519624741351208884586367338713168380517255371942004513427323519302239644942577857242971812435254662330759031768967177382983060565542094198907378905150730656048080132275765004164846003215653821897760509746291774815507746830796494034285254694400524655074707056270342496679049941805048898293639054610370078375734519769018734255632377650009721651463806621489598142546320214556430609908622033247200463424140776880487012681704860211113908135922146719138098778795647619020854986852998021113928206100716605474460129315481170473100576873448156312858142179485939718274525410924002585343,3265173504)'); a = G.1; b = G.2; c = G.5; d = G.6; e = G.8; f = G.10; g = G.12; h = G.14; i = G.16; j = G.18; k = G.19; l = G.20; m = G.21; n = G.22; o = G.23; p = G.24;
 
Permutation group:Degree $36$ $\langle(1,8,2,7)(3,9)(4,34,5,35)(6,36)(10,20,12,21)(11,19)(13,18)(14,17,15,16) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,8,2,7)(3,9)(4,34,5,35)(6,36)(10,20,12,21)(11,19)(13,18)(14,17,15,16)(22,26)(23,27)(24,25)(28,31,30,32,29,33), (1,18,34,19)(2,17,35,20)(3,16,36,21)(4,11,7,15,6,12,9,14,5,10,8,13)(22,24,23)(25,26,27)(28,31,30,33,29,32), (1,27,36,24,2,25,35,23,3,26,34,22)(4,28,7,31,5,29,9,33,6,30,8,32)(10,18)(11,16,12,17)(13,20,14,21)(15,19) >;
 
Copy content gap:G := Group( (1,8,2,7)(3,9)(4,34,5,35)(6,36)(10,20,12,21)(11,19)(13,18)(14,17,15,16)(22,26)(23,27)(24,25)(28,31,30,32,29,33), (1,18,34,19)(2,17,35,20)(3,16,36,21)(4,11,7,15,6,12,9,14,5,10,8,13)(22,24,23)(25,26,27)(28,31,30,33,29,32), (1,27,36,24,2,25,35,23,3,26,34,22)(4,28,7,31,5,29,9,33,6,30,8,32)(10,18)(11,16,12,17)(13,20,14,21)(15,19) );
 
Copy content sage:G = PermutationGroup(['(1,8,2,7)(3,9)(4,34,5,35)(6,36)(10,20,12,21)(11,19)(13,18)(14,17,15,16)(22,26)(23,27)(24,25)(28,31,30,32,29,33)', '(1,18,34,19)(2,17,35,20)(3,16,36,21)(4,11,7,15,6,12,9,14,5,10,8,13)(22,24,23)(25,26,27)(28,31,30,33,29,32)', '(1,27,36,24,2,25,35,23,3,26,34,22)(4,28,7,31,5,29,9,33,6,30,8,32)(10,18)(11,16,12,17)(13,20,14,21)(15,19)'])
 
Transitive group: 36T101811 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_3^{12}.C_2^6.D_6)$ . $D_4$ (2) $(C_3^{12}.C_2^6.D_6)$ . $D_4$ (2) $(C_3^{12}.C_2^5)$ . $(D_4\times S_4)$ (2) $(C_3^{11}.D_6)$ . $(C_2^6:S_4)$ all 47

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2}^{3} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{7}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 82 normal subgroups (28 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $C_3^6.(C_6^3.S_3^3:A_4)$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 4 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $3889 \times 3889$ character table is not available for this group.

Rational character table

The $3537 \times 3537$ rational character table is not available for this group.