Properties

Label 3200000000.jso
Order \( 2^{13} \cdot 5^{8} \)
Exponent \( 2^{3} \cdot 5 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{4} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{15} \cdot 5^{8} \)
$\card{\mathrm{Out}(G)}$ \( 2^{2} \)
Perm deg. $40$
Trans deg. not computed
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 40 | (1,3,2,5)(6,40,9,36,8,39,10,38)(7,37)(12,15)(13,14)(16,35,30,23,19,33,27,24)(17,31,29,25,18,32,28,22)(20,34,26,21), (1,29,10,31,2,28,8,35)(3,27,6,34,5,30,7,32)(4,26,9,33)(11,18,39,21,14,16,38,23)(12,19,37,25,13,20,40,24)(15,17,36,22), (1,37,11,7,4,39,15,9,2,36,14,6,5,38,13,8,3,40,12,10)(16,29,17,30,20,28,19,27)(18,26)(21,23,24,22)(31,33)(34,35) >;
 
Copy content gap:G := Group( (1,3,2,5)(6,40,9,36,8,39,10,38)(7,37)(12,15)(13,14)(16,35,30,23,19,33,27,24)(17,31,29,25,18,32,28,22)(20,34,26,21), (1,29,10,31,2,28,8,35)(3,27,6,34,5,30,7,32)(4,26,9,33)(11,18,39,21,14,16,38,23)(12,19,37,25,13,20,40,24)(15,17,36,22), (1,37,11,7,4,39,15,9,2,36,14,6,5,38,13,8,3,40,12,10)(16,29,17,30,20,28,19,27)(18,26)(21,23,24,22)(31,33)(34,35) );
 
Copy content sage:G = PermutationGroup(['(1,3,2,5)(6,40,9,36,8,39,10,38)(7,37)(12,15)(13,14)(16,35,30,23,19,33,27,24)(17,31,29,25,18,32,28,22)(20,34,26,21)', '(1,29,10,31,2,28,8,35)(3,27,6,34,5,30,7,32)(4,26,9,33)(11,18,39,21,14,16,38,23)(12,19,37,25,13,20,40,24)(15,17,36,22)', '(1,37,11,7,4,39,15,9,2,36,14,6,5,38,13,8,3,40,12,10)(16,29,17,30,20,28,19,27)(18,26)(21,23,24,22)(31,33)(34,35)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(331994455945355918847409995728934731375109075125774224654127473435708593761976033229579820945421438603591653839473145909350260333221707135526347494293297414470998614851890064239477304411051560609668865517770402986976717081512311242201165263125418185412950502846229050273674271034861455206384236731841210424621382654389869193708918548709141388612245758675835773119162479357630221607142611997614646243612563282298362989782721870689931938513235071568488521050952765603831407711334168331124098571166862136146599241144445728940694161036138583993660569216410293184321985413838181535524894907767778159327355951191739397242113530853659161559908343025427394928632489298435757254081900629318911413054083490514653758493291532587247649944903595879311459064524496355882834825803639498430956428920728122129685237075297354518185567702982468478878877487338873828325238653953114738271539265922665771556272133611693643337580906912303625236172232390168076166963902122838348226842091043415145859394730003464284066169024637153095143933340451390531466911541782809532569360181230702563265758010699786791012528247821430993127811012156778312794955424544031613268520880123933514287604317714489736281464172268507764026769777476048571655879183252193614631800710861796285864320412048937793329833177467038390627977869238497657625298326973131865397548666780430355832928654122785420662189724049494749241679724061950964315605486854582199171287744044851535625594269586373381908709438912966805778984086094478897547717933585235385620792008573443181677224770340981870291503175541033109622974297503657854439263795181582077943490331790108123108407561011719082770965010565411182731972728335435401950509737750490206035139564707614208536772991574151967228242503599153480081274656261750204496821993831256820564177506303,3200000000)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.10; f = G.13; g = G.15; h = G.17; i = G.18; j = G.19; k = G.20; l = G.21;
 

Group information

Description:$C_5^8.C_2^5.D_4^2.C_2^2$
Order: \(3200000000\)\(\medspace = 2^{13} \cdot 5^{8} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(12800000000\)\(\medspace = 2^{15} \cdot 5^{8} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 13, $C_5$ x 8
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 4 5 8 10 20 40
Elements 1 566975 152840000 390624 1288000000 74042400 1172160000 512000000 3200000000
Conjugacy classes   1 12 75 89 49 128 232 40 626
Divisions 1 12 50 89 20 128 131 10 441
Autjugacy classes 1 12 57 56 21 100 145 10 402

Minimal presentations

Permutation degree:$40$
Transitive degree:not computed
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l \mid d^{8}=e^{20}=f^{10}=g^{10}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([21, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 5, 2, 5, 5, 5, 5, 5, 5, 42, 45023704342, 81125475230, 34034641601, 170, 113433718947, 55257292968, 15915626562, 270308699644, 103032554545, 3262615066, 21816242137, 298, 231711524357, 34015970042, 27658392095, 35541084668, 1329302126, 67664792670, 96153838395, 97855255224, 23291519145, 25025582910, 1769768685, 426, 216900724999, 24294821404, 61217646385, 38560980934, 8456301595, 2248684816, 490, 249248095496, 74130118301, 79408026482, 21767967719, 13409919020, 5519684633, 314864692809, 131394789150, 110006433651, 1136721672, 37038230973, 5971570194, 6346531095, 3054254436, 1753083957, 618, 32276192266, 116238312991, 140353929460, 70898298313, 43423638814, 18773041171, 4992139288, 13093, 8494, 682, 397571457035, 156635136032, 82304409653, 34481664074, 23917824095, 10891932020, 10383464585, 8222, 8243, 232924412460, 349503633057, 142182471030, 102275925099, 39951689328, 8121667125, 8183168586, 3184425039, 2672222460, 947643261, 525637152, 810, 939120709645, 35193446434, 37526630455, 82978560076, 30105600097, 18583114486, 8824054987, 94240, 94261, 1514229562, 198691303, 535768944494, 233946840995, 149731729616, 110530355117, 41305849298, 22477392119, 11348593340, 5941404161, 2833614182, 1702449203, 5323724, 11847416, 39770612, 938, 893878272015, 17306419236, 113663778873, 31782912078, 554803299, 8601720, 3983616141, 202675362, 1075383, 34003404, 269025, 3366987, 923084058640, 357834043429, 182625526330, 89135622991, 1148523364, 29096928121, 1113840142, 8568163, 5712184, 521934205, 261681226, 143068, 14590, 38894542865, 364398096422, 78311052347, 124611347024, 15523619429, 16244928122, 2480889743, 2237760164, 30240185, 1003212206, 732186227, 73521269, 75911, 40857600018, 69033205308, 98313600081, 653721702, 1276800123, 4673088144, 239400165, 159600186, 39900207, 39900228, 3990270, 835423518739, 281057710120, 22517268541, 137135416402, 34724336743, 18654720124, 15652224145, 3696000166, 840000187, 1475880208, 884940229, 101850271, 2415313, 587059200020, 575769600041, 130489938494, 111484800083, 38514470504, 9878400125, 4817836946, 4498200167, 4410000188, 1741950209, 1102500230, 30870272, 11245814]); a,b,c,d,e,f,g,h,i,j,k,l := Explode([G.1, G.3, G.5, G.7, G.10, G.13, G.15, G.17, G.18, G.19, G.20, G.21]); AssignNames(~G, ["a", "a2", "b", "b2", "c", "c2", "d", "d2", "d4", "e", "e2", "e4", "f", "f2", "g", "g2", "h", "i", "j", "k", "l"]);
 
Copy content gap:G := PcGroupCode(331994455945355918847409995728934731375109075125774224654127473435708593761976033229579820945421438603591653839473145909350260333221707135526347494293297414470998614851890064239477304411051560609668865517770402986976717081512311242201165263125418185412950502846229050273674271034861455206384236731841210424621382654389869193708918548709141388612245758675835773119162479357630221607142611997614646243612563282298362989782721870689931938513235071568488521050952765603831407711334168331124098571166862136146599241144445728940694161036138583993660569216410293184321985413838181535524894907767778159327355951191739397242113530853659161559908343025427394928632489298435757254081900629318911413054083490514653758493291532587247649944903595879311459064524496355882834825803639498430956428920728122129685237075297354518185567702982468478878877487338873828325238653953114738271539265922665771556272133611693643337580906912303625236172232390168076166963902122838348226842091043415145859394730003464284066169024637153095143933340451390531466911541782809532569360181230702563265758010699786791012528247821430993127811012156778312794955424544031613268520880123933514287604317714489736281464172268507764026769777476048571655879183252193614631800710861796285864320412048937793329833177467038390627977869238497657625298326973131865397548666780430355832928654122785420662189724049494749241679724061950964315605486854582199171287744044851535625594269586373381908709438912966805778984086094478897547717933585235385620792008573443181677224770340981870291503175541033109622974297503657854439263795181582077943490331790108123108407561011719082770965010565411182731972728335435401950509737750490206035139564707614208536772991574151967228242503599153480081274656261750204496821993831256820564177506303,3200000000); a := G.1; b := G.3; c := G.5; d := G.7; e := G.10; f := G.13; g := G.15; h := G.17; i := G.18; j := G.19; k := G.20; l := G.21;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(331994455945355918847409995728934731375109075125774224654127473435708593761976033229579820945421438603591653839473145909350260333221707135526347494293297414470998614851890064239477304411051560609668865517770402986976717081512311242201165263125418185412950502846229050273674271034861455206384236731841210424621382654389869193708918548709141388612245758675835773119162479357630221607142611997614646243612563282298362989782721870689931938513235071568488521050952765603831407711334168331124098571166862136146599241144445728940694161036138583993660569216410293184321985413838181535524894907767778159327355951191739397242113530853659161559908343025427394928632489298435757254081900629318911413054083490514653758493291532587247649944903595879311459064524496355882834825803639498430956428920728122129685237075297354518185567702982468478878877487338873828325238653953114738271539265922665771556272133611693643337580906912303625236172232390168076166963902122838348226842091043415145859394730003464284066169024637153095143933340451390531466911541782809532569360181230702563265758010699786791012528247821430993127811012156778312794955424544031613268520880123933514287604317714489736281464172268507764026769777476048571655879183252193614631800710861796285864320412048937793329833177467038390627977869238497657625298326973131865397548666780430355832928654122785420662189724049494749241679724061950964315605486854582199171287744044851535625594269586373381908709438912966805778984086094478897547717933585235385620792008573443181677224770340981870291503175541033109622974297503657854439263795181582077943490331790108123108407561011719082770965010565411182731972728335435401950509737750490206035139564707614208536772991574151967228242503599153480081274656261750204496821993831256820564177506303,3200000000)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.10; f = G.13; g = G.15; h = G.17; i = G.18; j = G.19; k = G.20; l = G.21;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(331994455945355918847409995728934731375109075125774224654127473435708593761976033229579820945421438603591653839473145909350260333221707135526347494293297414470998614851890064239477304411051560609668865517770402986976717081512311242201165263125418185412950502846229050273674271034861455206384236731841210424621382654389869193708918548709141388612245758675835773119162479357630221607142611997614646243612563282298362989782721870689931938513235071568488521050952765603831407711334168331124098571166862136146599241144445728940694161036138583993660569216410293184321985413838181535524894907767778159327355951191739397242113530853659161559908343025427394928632489298435757254081900629318911413054083490514653758493291532587247649944903595879311459064524496355882834825803639498430956428920728122129685237075297354518185567702982468478878877487338873828325238653953114738271539265922665771556272133611693643337580906912303625236172232390168076166963902122838348226842091043415145859394730003464284066169024637153095143933340451390531466911541782809532569360181230702563265758010699786791012528247821430993127811012156778312794955424544031613268520880123933514287604317714489736281464172268507764026769777476048571655879183252193614631800710861796285864320412048937793329833177467038390627977869238497657625298326973131865397548666780430355832928654122785420662189724049494749241679724061950964315605486854582199171287744044851535625594269586373381908709438912966805778984086094478897547717933585235385620792008573443181677224770340981870291503175541033109622974297503657854439263795181582077943490331790108123108407561011719082770965010565411182731972728335435401950509737750490206035139564707614208536772991574151967228242503599153480081274656261750204496821993831256820564177506303,3200000000)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.10; f = G.13; g = G.15; h = G.17; i = G.18; j = G.19; k = G.20; l = G.21;
 
Permutation group:Degree $40$ $\langle(1,3,2,5)(6,40,9,36,8,39,10,38)(7,37)(12,15)(13,14)(16,35,30,23,19,33,27,24) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 40 | (1,3,2,5)(6,40,9,36,8,39,10,38)(7,37)(12,15)(13,14)(16,35,30,23,19,33,27,24)(17,31,29,25,18,32,28,22)(20,34,26,21), (1,29,10,31,2,28,8,35)(3,27,6,34,5,30,7,32)(4,26,9,33)(11,18,39,21,14,16,38,23)(12,19,37,25,13,20,40,24)(15,17,36,22), (1,37,11,7,4,39,15,9,2,36,14,6,5,38,13,8,3,40,12,10)(16,29,17,30,20,28,19,27)(18,26)(21,23,24,22)(31,33)(34,35) >;
 
Copy content gap:G := Group( (1,3,2,5)(6,40,9,36,8,39,10,38)(7,37)(12,15)(13,14)(16,35,30,23,19,33,27,24)(17,31,29,25,18,32,28,22)(20,34,26,21), (1,29,10,31,2,28,8,35)(3,27,6,34,5,30,7,32)(4,26,9,33)(11,18,39,21,14,16,38,23)(12,19,37,25,13,20,40,24)(15,17,36,22), (1,37,11,7,4,39,15,9,2,36,14,6,5,38,13,8,3,40,12,10)(16,29,17,30,20,28,19,27)(18,26)(21,23,24,22)(31,33)(34,35) );
 
Copy content sage:G = PermutationGroup(['(1,3,2,5)(6,40,9,36,8,39,10,38)(7,37)(12,15)(13,14)(16,35,30,23,19,33,27,24)(17,31,29,25,18,32,28,22)(20,34,26,21)', '(1,29,10,31,2,28,8,35)(3,27,6,34,5,30,7,32)(4,26,9,33)(11,18,39,21,14,16,38,23)(12,19,37,25,13,20,40,24)(15,17,36,22)', '(1,37,11,7,4,39,15,9,2,36,14,6,5,38,13,8,3,40,12,10)(16,29,17,30,20,28,19,27)(18,26)(21,23,24,22)(31,33)(34,35)'])
 
Transitive group: 40T263103 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_5^8.C_2^5.C_2^5)$ . $D_4$ (4) $(C_5^8.C_2^5.D_4^2)$ . $C_2^2$ $(C_5^8.C_2^5)$ . $(C_2^5.D_4)$ $(C_5^4.D_5^4.C_2^3:Q_8)$ . $D_4$ all 89

Elements of the group are displayed as permutations of degree 40.

Homology

Abelianization: $C_{2}^{2} \times C_{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 143 normal subgroups (137 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^3.C_2^5.C_2^3.C_2^2$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5^8$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 3 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $626 \times 626$ character table is not available for this group.

Rational character table

The $441 \times 441$ rational character table is not available for this group.