Properties

Label 3200000000.jsa
Order \( 2^{13} \cdot 5^{8} \)
Exponent \( 2^{4} \cdot 5 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{4} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{16} \cdot 5^{8} \)
$\card{\mathrm{Out}(G)}$ \( 2^{3} \)
Perm deg. $40$
Trans deg. not computed
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 40 | (1,39,14,6,3,37,13,7,5,40,12,8,2,38,11,9,4,36,15,10)(16,20,19,18,17)(21,35)(22,31,25,34)(23,32,24,33), (1,8,4,9)(2,10,3,7)(5,6)(11,39,14,40,12,36,15,37,13,38)(16,21,19,23)(17,25,18,24)(20,22)(26,31,27,34,28,32,29,35,30,33), (1,22,7,16,2,25,8,20,5,24,6,17,4,21,10,18)(3,23,9,19)(11,35,38,30,15,32,37,28,12,33,39,27,13,31,40,29)(14,34,36,26) >;
 
Copy content gap:G := Group( (1,39,14,6,3,37,13,7,5,40,12,8,2,38,11,9,4,36,15,10)(16,20,19,18,17)(21,35)(22,31,25,34)(23,32,24,33), (1,8,4,9)(2,10,3,7)(5,6)(11,39,14,40,12,36,15,37,13,38)(16,21,19,23)(17,25,18,24)(20,22)(26,31,27,34,28,32,29,35,30,33), (1,22,7,16,2,25,8,20,5,24,6,17,4,21,10,18)(3,23,9,19)(11,35,38,30,15,32,37,28,12,33,39,27,13,31,40,29)(14,34,36,26) );
 
Copy content sage:G = PermutationGroup(['(1,39,14,6,3,37,13,7,5,40,12,8,2,38,11,9,4,36,15,10)(16,20,19,18,17)(21,35)(22,31,25,34)(23,32,24,33)', '(1,8,4,9)(2,10,3,7)(5,6)(11,39,14,40,12,36,15,37,13,38)(16,21,19,23)(17,25,18,24)(20,22)(26,31,27,34,28,32,29,35,30,33)', '(1,22,7,16,2,25,8,20,5,24,6,17,4,21,10,18)(3,23,9,19)(11,35,38,30,15,32,37,28,12,33,39,27,13,31,40,29)(14,34,36,26)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(166178717492057131452598959982687842545350813629966885538547408839581400618379522740527781332095546485703450284768208273044564260545719672203843730612946733901957414251872280532611668441105412180917161674186283270387139925087898011578819262214021955935642350469162846073183799309082411918690283812364731502800385513610175938561161152588209790089343555063901390533438348949309615362444252585314094108721843819126585576807890638060313431644669700267694704263827855836820638787187461249577958791393791166992496657623021726888794707468496993595073243899645043941091414325571072978084722196661618397557503919506100994322416158431909244523634201842594126765550347171593540376665055333349520698359955748988578587667260470141138344987971300901105862266309604019431592100597539362034021846825070860559736999398808914900546135744485726159841484666666172529926400530406253273362289278316279961924677875694944019981617749534633211954599187026267393538883691513156292545821861596828396072005116203096208790907334923297849761136960060400050504106655996818106396268919805132106070597780165249806598125736985528125216557282093361579424404809357169952857144797925979546958117771048671586671969408062213275219531823686651233916611264303273804847827223278280646615400336739630847000908980361712854678975600373158665039589549464994204356181396282294644220345743435325589700223266689855123707632011813319856735815013641277091088445692487476879920743590974745447502143039842871138723428660044465517119673323872415691788597555353482073467985795567317243979610126981954190873274669155230062481537833906519031010314733906167346205598748395474679725182055605169802819723212769859831988619558623860069907717492612708593827291198633742190116691204075627469499541284322111119987939669135644646241521120816297668872939998566350781378436547166207,3200000000)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.10; g = G.12; h = G.14; i = G.16; j = G.17; k = G.18; l = G.19; m = G.20; n = G.21;
 

Group information

Description:$C_5^7.(C_2^3\times F_5).C_2^6:C_4$
Order: \(3200000000\)\(\medspace = 2^{13} \cdot 5^{8} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(25600000000\)\(\medspace = 2^{16} \cdot 5^{8} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 13, $C_5$ x 8
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 4 5 8 10 16 20
Elements 1 817375 219380000 390624 600000000 86292000 800000000 1493120000 3200000000
Conjugacy classes   1 19 74 122 27 351 16 250 860
Divisions 1 19 51 122 18 351 4 146 712
Autjugacy classes 1 14 44 46 14 139 2 87 347

Minimal presentations

Permutation degree:$40$
Transitive degree:not computed
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n \mid g^{10}=h^{10}=i^{5}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([21, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 5, 5, 5, 5, 5, 5, 5, 42, 25901140630, 71378718014, 86522979713, 170, 203289594147, 95868316008, 25022323266, 11940992284, 158647812145, 58304602906, 8794246297, 298, 267420013061, 30918281210, 78094518815, 25855071548, 7489508654, 210188560350, 117568995963, 35530251672, 44657368797, 2034206670, 11684722293, 426, 142913197063, 76127611420, 15899890993, 14941326022, 6183390619, 4612888336, 2016565978, 269614162448, 128454996125, 99374180018, 10754245223, 13261576700, 6174549977, 2183715962, 494872085, 2209712576, 77373033369, 254694289950, 82838582451, 17033009352, 27396744573, 33442194, 9083049495, 89780196, 218615637, 618, 402699128842, 37872231967, 15941882932, 24838687177, 232700254, 2110009555, 1185429304, 5113344085, 697403038, 638992420, 697958884235, 213328668704, 118706194709, 76441139786, 4899654239, 11653310708, 5111491529, 2415986654, 147655043, 784297784, 403093877, 746, 390481588236, 371586109473, 168295895094, 2994001995, 19418660448, 924618357, 11655047178, 26367, 3146925780, 523729953, 241391190, 593550268429, 272225071138, 105133045303, 213448780, 7865934817, 14730895990, 9753781771, 921654880, 1131773173, 456676282, 813315943, 84345904, 64990435, 874, 92961792014, 323807662115, 121298688056, 71516551757, 1028160098, 28997821559, 10091168780, 302561, 2234690822, 75803, 50624, 88445, 401660313615, 2669936676, 131535667257, 452444238, 25125273699, 57630840, 53760141, 1612962, 13924023, 403404, 269025, 323327348752, 538627891237, 160225164346, 91392079, 66173474404, 25077964921, 16832121742, 8568163, 4284184, 1899668605, 391843447, 71689, 1008322560017, 341204742182, 115386163259, 85330216016, 73795276901, 35032532090, 4838543, 45360164, 1336928729, 11340206, 7560227, 3780248, 8449351698, 543937228839, 206107797564, 147945369681, 392233062, 25760716923, 16998038544, 239400165, 119700186, 705591807, 19950249, 1995291, 1006111948819, 479207178280, 201759129661, 145649602642, 40936304743, 15180910204, 1524096145, 1260000166, 4420295227, 944160208, 56784229, 479682250, 10832092, 667231617044, 630818592809, 260898591806, 29443502675, 30290109800, 19700465021, 11681913746, 6615000167, 4884890156, 1196874209, 282240230, 500932151, 55345793]); a,b,c,d,e,f,g,h,i,j,k,l,m,n := Explode([G.1, G.3, G.5, G.7, G.9, G.10, G.12, G.14, G.16, G.17, G.18, G.19, G.20, G.21]); AssignNames(~G, ["a", "a2", "b", "b2", "c", "c2", "d", "d2", "e", "f", "f2", "g", "g2", "h", "h2", "i", "j", "k", "l", "m", "n"]);
 
Copy content gap:G := PcGroupCode(166178717492057131452598959982687842545350813629966885538547408839581400618379522740527781332095546485703450284768208273044564260545719672203843730612946733901957414251872280532611668441105412180917161674186283270387139925087898011578819262214021955935642350469162846073183799309082411918690283812364731502800385513610175938561161152588209790089343555063901390533438348949309615362444252585314094108721843819126585576807890638060313431644669700267694704263827855836820638787187461249577958791393791166992496657623021726888794707468496993595073243899645043941091414325571072978084722196661618397557503919506100994322416158431909244523634201842594126765550347171593540376665055333349520698359955748988578587667260470141138344987971300901105862266309604019431592100597539362034021846825070860559736999398808914900546135744485726159841484666666172529926400530406253273362289278316279961924677875694944019981617749534633211954599187026267393538883691513156292545821861596828396072005116203096208790907334923297849761136960060400050504106655996818106396268919805132106070597780165249806598125736985528125216557282093361579424404809357169952857144797925979546958117771048671586671969408062213275219531823686651233916611264303273804847827223278280646615400336739630847000908980361712854678975600373158665039589549464994204356181396282294644220345743435325589700223266689855123707632011813319856735815013641277091088445692487476879920743590974745447502143039842871138723428660044465517119673323872415691788597555353482073467985795567317243979610126981954190873274669155230062481537833906519031010314733906167346205598748395474679725182055605169802819723212769859831988619558623860069907717492612708593827291198633742190116691204075627469499541284322111119987939669135644646241521120816297668872939998566350781378436547166207,3200000000); a := G.1; b := G.3; c := G.5; d := G.7; e := G.9; f := G.10; g := G.12; h := G.14; i := G.16; j := G.17; k := G.18; l := G.19; m := G.20; n := G.21;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(166178717492057131452598959982687842545350813629966885538547408839581400618379522740527781332095546485703450284768208273044564260545719672203843730612946733901957414251872280532611668441105412180917161674186283270387139925087898011578819262214021955935642350469162846073183799309082411918690283812364731502800385513610175938561161152588209790089343555063901390533438348949309615362444252585314094108721843819126585576807890638060313431644669700267694704263827855836820638787187461249577958791393791166992496657623021726888794707468496993595073243899645043941091414325571072978084722196661618397557503919506100994322416158431909244523634201842594126765550347171593540376665055333349520698359955748988578587667260470141138344987971300901105862266309604019431592100597539362034021846825070860559736999398808914900546135744485726159841484666666172529926400530406253273362289278316279961924677875694944019981617749534633211954599187026267393538883691513156292545821861596828396072005116203096208790907334923297849761136960060400050504106655996818106396268919805132106070597780165249806598125736985528125216557282093361579424404809357169952857144797925979546958117771048671586671969408062213275219531823686651233916611264303273804847827223278280646615400336739630847000908980361712854678975600373158665039589549464994204356181396282294644220345743435325589700223266689855123707632011813319856735815013641277091088445692487476879920743590974745447502143039842871138723428660044465517119673323872415691788597555353482073467985795567317243979610126981954190873274669155230062481537833906519031010314733906167346205598748395474679725182055605169802819723212769859831988619558623860069907717492612708593827291198633742190116691204075627469499541284322111119987939669135644646241521120816297668872939998566350781378436547166207,3200000000)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.10; g = G.12; h = G.14; i = G.16; j = G.17; k = G.18; l = G.19; m = G.20; n = G.21;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(166178717492057131452598959982687842545350813629966885538547408839581400618379522740527781332095546485703450284768208273044564260545719672203843730612946733901957414251872280532611668441105412180917161674186283270387139925087898011578819262214021955935642350469162846073183799309082411918690283812364731502800385513610175938561161152588209790089343555063901390533438348949309615362444252585314094108721843819126585576807890638060313431644669700267694704263827855836820638787187461249577958791393791166992496657623021726888794707468496993595073243899645043941091414325571072978084722196661618397557503919506100994322416158431909244523634201842594126765550347171593540376665055333349520698359955748988578587667260470141138344987971300901105862266309604019431592100597539362034021846825070860559736999398808914900546135744485726159841484666666172529926400530406253273362289278316279961924677875694944019981617749534633211954599187026267393538883691513156292545821861596828396072005116203096208790907334923297849761136960060400050504106655996818106396268919805132106070597780165249806598125736985528125216557282093361579424404809357169952857144797925979546958117771048671586671969408062213275219531823686651233916611264303273804847827223278280646615400336739630847000908980361712854678975600373158665039589549464994204356181396282294644220345743435325589700223266689855123707632011813319856735815013641277091088445692487476879920743590974745447502143039842871138723428660044465517119673323872415691788597555353482073467985795567317243979610126981954190873274669155230062481537833906519031010314733906167346205598748395474679725182055605169802819723212769859831988619558623860069907717492612708593827291198633742190116691204075627469499541284322111119987939669135644646241521120816297668872939998566350781378436547166207,3200000000)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.10; g = G.12; h = G.14; i = G.16; j = G.17; k = G.18; l = G.19; m = G.20; n = G.21;
 
Permutation group:Degree $40$ $\langle(1,39,14,6,3,37,13,7,5,40,12,8,2,38,11,9,4,36,15,10)(16,20,19,18,17)(21,35) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 40 | (1,39,14,6,3,37,13,7,5,40,12,8,2,38,11,9,4,36,15,10)(16,20,19,18,17)(21,35)(22,31,25,34)(23,32,24,33), (1,8,4,9)(2,10,3,7)(5,6)(11,39,14,40,12,36,15,37,13,38)(16,21,19,23)(17,25,18,24)(20,22)(26,31,27,34,28,32,29,35,30,33), (1,22,7,16,2,25,8,20,5,24,6,17,4,21,10,18)(3,23,9,19)(11,35,38,30,15,32,37,28,12,33,39,27,13,31,40,29)(14,34,36,26) >;
 
Copy content gap:G := Group( (1,39,14,6,3,37,13,7,5,40,12,8,2,38,11,9,4,36,15,10)(16,20,19,18,17)(21,35)(22,31,25,34)(23,32,24,33), (1,8,4,9)(2,10,3,7)(5,6)(11,39,14,40,12,36,15,37,13,38)(16,21,19,23)(17,25,18,24)(20,22)(26,31,27,34,28,32,29,35,30,33), (1,22,7,16,2,25,8,20,5,24,6,17,4,21,10,18)(3,23,9,19)(11,35,38,30,15,32,37,28,12,33,39,27,13,31,40,29)(14,34,36,26) );
 
Copy content sage:G = PermutationGroup(['(1,39,14,6,3,37,13,7,5,40,12,8,2,38,11,9,4,36,15,10)(16,20,19,18,17)(21,35)(22,31,25,34)(23,32,24,33)', '(1,8,4,9)(2,10,3,7)(5,6)(11,39,14,40,12,36,15,37,13,38)(16,21,19,23)(17,25,18,24)(20,22)(26,31,27,34,28,32,29,35,30,33)', '(1,22,7,16,2,25,8,20,5,24,6,17,4,21,10,18)(3,23,9,19)(11,35,38,30,15,32,37,28,12,33,39,27,13,31,40,29)(14,34,36,26)'])
 
Transitive group: 40T263085 40T266081 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_5^8.C_2^6)$ . $(C_2^4.D_4)$ (2) $(C_5^8.C_2^5)$ . $(C_2^5.D_4)$ (2) $(C_5^8.C_2^5)$ . $(C_2^5.D_4)$ $(C_5^4.D_5^4.C_2^4:Q_8)$ . $C_4$ all 103

Elements of the group are displayed as permutations of degree 40.

Homology

Abelianization: $C_{2}^{2} \times C_{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 195 normal subgroups (95 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^2.C_2^6.C_2^3.C_2^2$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5^8$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 3 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $860 \times 860$ character table is not available for this group.

Rational character table

The $712 \times 712$ rational character table is not available for this group.