| Presentation: |
${\langle a, b, c, d, e, f, g, h, i, j, k, l, m \mid f^{10}=g^{10}=h^{10}= \!\cdots\! \rangle}$
|
magma:G := PCGroup([21, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 5, 2, 5, 2, 5, 5, 5, 5, 5, 42, 62671949110, 8724227654, 3687543617, 170, 90248751267, 25165217640, 271176258, 145905932764, 5813009185, 40008788026, 3124084597, 298, 317580806597, 174919967738, 6974707871, 25160035388, 4855777022, 181828274886, 219846374523, 36606883200, 11101838733, 11591984382, 11479331541, 426, 193384418311, 18187491868, 75105983281, 60383234758, 22465488283, 8957491984, 4119628954, 65821655600, 190913986397, 109146471890, 22337017991, 29159248196, 17732743673, 6587186894, 588168533, 1331316176, 463848740889, 318144059550, 1489857651, 30893486472, 1142092653, 4717718994, 1395543375, 2022720996, 1479243957, 618, 455448913930, 173978466847, 94565619508, 80014556233, 16646843230, 9010870291, 4531776616, 3063986005, 2672211874, 329296891403, 161426151968, 181156840757, 73544615498, 13486600607, 21703570676, 9835362569, 2439773438, 2672213219, 184486880, 728785481, 746, 546248521740, 59852083233, 161315481654, 76247912907, 6174604896, 13497382197, 7460552874, 6693981999, 3341531100, 458662041, 773189179405, 34346594722, 125409458551, 101457753676, 12158186641, 10218499318, 10504267339, 3045957760, 2094514981, 156437602, 147602923, 138500704, 874, 113223075854, 54842135075, 129443328056, 95360832077, 12580323938, 15576624119, 4208904140, 7724052161, 3855726182, 3213203, 52630445, 1042727263887, 274976701476, 130163335737, 35990169678, 48281904483, 30196992120, 15394848141, 4662336162, 477792183, 716016204, 499128225, 83294646, 28073067, 3222528, 253989, 1002, 36703027216, 433198080037, 260375899450, 11424000079, 342720100, 22848121, 2142000142, 11424163, 285847, 28849, 935940870161, 96768000038, 291755520059, 114670080080, 96768101, 120960122, 9253440143, 60480164, 15120206, 15452, 534842735634, 416747928615, 233429683260, 154768588881, 66291481638, 29430240123, 5173593744, 2745120165, 1380540186, 35910207, 242592249, 80133, 326860800019, 2150400040, 166119475261, 161280082, 63705600103, 3360000124, 20160145, 1680000166, 42000250, 4200292, 420334, 947875267604, 157152135209, 169912995902, 170038310483, 5503736552, 28365120125, 5590468946, 3157560167, 568890209, 220941251, 7717793, 2205335]); a,b,c,d,e,f,g,h,i,j,k,l,m := Explode([G.1, G.3, G.5, G.7, G.9, G.10, G.12, G.14, G.16, G.18, G.19, G.20, G.21]); AssignNames(~G, ["a", "a2", "b", "b2", "c", "c2", "d", "d2", "e", "f", "f2", "g", "g2", "h", "h2", "i", "i2", "j", "k", "l", "m"]);
gap:G := PcGroupCode(1835169827652864939868573280120817543961925855228677115345353122922577808942445652515417923022470389128703763675637217662615900982940146910915673005685479062027803061628707594481837216657207622335869307037161738572315507180944745525049075627751388409571095924258907281186207152688975496157812463884710001302655078168195051404642013889277847402057939516670481712388257914209132935450084170594028658382326611066105496840887904829761883114376975513375925162636560593094199189762700201498705972191646269462017750126912274613974633432307307090878526886151023295799790079185282783792270840359309448282111746662405929642449415676664634395116326903651292404514794145271947398781549461955718447076798770053221634584404218030123973269871962538521292609037819876538085083839927595095840454595162507654902255679790355981488538647987539547916211644167682086479902495046702785472567130796650669451526398204296173624437414479867233668900378500749779259567017987434333464389185092653342881503097192137428015271953280844403162485279865561322358765978833123074447879616224417117406854818944056070668043830542004192243507953169003537215887433385969091806263804529754362865395466314698433832425841223692490896980267190708940801919619800949372048601690263693789057632969440171075652139956066549917593667330529065365437779697299775298100432844141596119725558231647857054576158981952854482924378608411856556852900794024876476078278607271341300658218333373668503638577766135150573819630672153028950093024005385238853290857110475973374477480512178570177751357580251979551507772094373198011966121631755109351570118661890670249582476496953478123176568703514029602148548908793149500873294315576376933972580542706532709175123080523621115953762691807467442625367198505950900072347808767,3200000000); a := G.1; b := G.3; c := G.5; d := G.7; e := G.9; f := G.10; g := G.12; h := G.14; i := G.16; j := G.18; k := G.19; l := G.20; m := G.21;
sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(1835169827652864939868573280120817543961925855228677115345353122922577808942445652515417923022470389128703763675637217662615900982940146910915673005685479062027803061628707594481837216657207622335869307037161738572315507180944745525049075627751388409571095924258907281186207152688975496157812463884710001302655078168195051404642013889277847402057939516670481712388257914209132935450084170594028658382326611066105496840887904829761883114376975513375925162636560593094199189762700201498705972191646269462017750126912274613974633432307307090878526886151023295799790079185282783792270840359309448282111746662405929642449415676664634395116326903651292404514794145271947398781549461955718447076798770053221634584404218030123973269871962538521292609037819876538085083839927595095840454595162507654902255679790355981488538647987539547916211644167682086479902495046702785472567130796650669451526398204296173624437414479867233668900378500749779259567017987434333464389185092653342881503097192137428015271953280844403162485279865561322358765978833123074447879616224417117406854818944056070668043830542004192243507953169003537215887433385969091806263804529754362865395466314698433832425841223692490896980267190708940801919619800949372048601690263693789057632969440171075652139956066549917593667330529065365437779697299775298100432844141596119725558231647857054576158981952854482924378608411856556852900794024876476078278607271341300658218333373668503638577766135150573819630672153028950093024005385238853290857110475973374477480512178570177751357580251979551507772094373198011966121631755109351570118661890670249582476496953478123176568703514029602148548908793149500873294315576376933972580542706532709175123080523621115953762691807467442625367198505950900072347808767,3200000000)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.10; g = G.12; h = G.14; i = G.16; j = G.18; k = G.19; l = G.20; m = G.21;
sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(1835169827652864939868573280120817543961925855228677115345353122922577808942445652515417923022470389128703763675637217662615900982940146910915673005685479062027803061628707594481837216657207622335869307037161738572315507180944745525049075627751388409571095924258907281186207152688975496157812463884710001302655078168195051404642013889277847402057939516670481712388257914209132935450084170594028658382326611066105496840887904829761883114376975513375925162636560593094199189762700201498705972191646269462017750126912274613974633432307307090878526886151023295799790079185282783792270840359309448282111746662405929642449415676664634395116326903651292404514794145271947398781549461955718447076798770053221634584404218030123973269871962538521292609037819876538085083839927595095840454595162507654902255679790355981488538647987539547916211644167682086479902495046702785472567130796650669451526398204296173624437414479867233668900378500749779259567017987434333464389185092653342881503097192137428015271953280844403162485279865561322358765978833123074447879616224417117406854818944056070668043830542004192243507953169003537215887433385969091806263804529754362865395466314698433832425841223692490896980267190708940801919619800949372048601690263693789057632969440171075652139956066549917593667330529065365437779697299775298100432844141596119725558231647857054576158981952854482924378608411856556852900794024876476078278607271341300658218333373668503638577766135150573819630672153028950093024005385238853290857110475973374477480512178570177751357580251979551507772094373198011966121631755109351570118661890670249582476496953478123176568703514029602148548908793149500873294315576376933972580542706532709175123080523621115953762691807467442625367198505950900072347808767,3200000000)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.10; g = G.12; h = G.14; i = G.16; j = G.18; k = G.19; l = G.20; m = G.21;
|
| Permutation group: | Degree $40$
$\langle(1,35,36,19,3,34,38,20,4,31,39,18,2,32,37,17)(5,33,40,16)(6,28,14,21,8,29,12,24,9,27,11,23,7,26,13,25) \!\cdots\! \rangle$
|
magma:G := PermutationGroup< 40 | (1,35,36,19,3,34,38,20,4,31,39,18,2,32,37,17)(5,33,40,16)(6,28,14,21,8,29,12,24,9,27,11,23,7,26,13,25)(10,30,15,22), (1,19,14,26,2,17,12,28,3,20,15,30,4,18,13,27,5,16,11,29)(6,31,39,24,7,34,40,21,8,32,36,23,9,35,37,25,10,33,38,22), (1,23,40,29,3,25,38,26,4,21,37,27,2,24,39,30)(5,22,36,28)(6,17,13,34,9,19,15,33,8,20,11,35,10,18,14,31)(7,16,12,32) >;
gap:G := Group( (1,35,36,19,3,34,38,20,4,31,39,18,2,32,37,17)(5,33,40,16)(6,28,14,21,8,29,12,24,9,27,11,23,7,26,13,25)(10,30,15,22), (1,19,14,26,2,17,12,28,3,20,15,30,4,18,13,27,5,16,11,29)(6,31,39,24,7,34,40,21,8,32,36,23,9,35,37,25,10,33,38,22), (1,23,40,29,3,25,38,26,4,21,37,27,2,24,39,30)(5,22,36,28)(6,17,13,34,9,19,15,33,8,20,11,35,10,18,14,31)(7,16,12,32) );
sage:G = PermutationGroup(['(1,35,36,19,3,34,38,20,4,31,39,18,2,32,37,17)(5,33,40,16)(6,28,14,21,8,29,12,24,9,27,11,23,7,26,13,25)(10,30,15,22)', '(1,19,14,26,2,17,12,28,3,20,15,30,4,18,13,27,5,16,11,29)(6,31,39,24,7,34,40,21,8,32,36,23,9,35,37,25,10,33,38,22)', '(1,23,40,29,3,25,38,26,4,21,37,27,2,24,39,30)(5,22,36,28)(6,17,13,34,9,19,15,33,8,20,11,35,10,18,14,31)(7,16,12,32)'])
|
| Transitive group: |
40T262898 |
40T266040 |
40T266213 |
|
more information |
| Direct product: |
not computed |
| Semidirect product: |
not computed |
| Trans. wreath product: |
not isomorphic to a non-trivial transitive wreath product |
| Possibly split product: |
$(C_5^8.C_2^6.C_2^3)$ . $D_8$ (2) |
$(C_5^8.C_2^6)$ . $(C_2^3.D_8)$ |
$(C_5^8.C_2^5)$ . $(C_2^5.D_4)$ (2) |
$(C_5^8.C_2^5)$ . $(C_2^4.D_8)$ |
all 104 |
Elements of the group are displayed as permutations of degree 40.
The $1202 \times 1202$ character table is not available for this group.
The $1107 \times 1107$ rational character table is not available for this group.