Properties

Label 3200000000.jlt
Order \( 2^{13} \cdot 5^{8} \)
Exponent \( 2^{4} \cdot 5 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{4} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{16} \cdot 5^{8} \)
$\card{\mathrm{Out}(G)}$ \( 2^{3} \)
Perm deg. $40$
Trans deg. not computed
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 40 | (1,35,36,19,3,34,38,20,4,31,39,18,2,32,37,17)(5,33,40,16)(6,28,14,21,8,29,12,24,9,27,11,23,7,26,13,25)(10,30,15,22), (1,19,14,26,2,17,12,28,3,20,15,30,4,18,13,27,5,16,11,29)(6,31,39,24,7,34,40,21,8,32,36,23,9,35,37,25,10,33,38,22), (1,23,40,29,3,25,38,26,4,21,37,27,2,24,39,30)(5,22,36,28)(6,17,13,34,9,19,15,33,8,20,11,35,10,18,14,31)(7,16,12,32) >;
 
Copy content gap:G := Group( (1,35,36,19,3,34,38,20,4,31,39,18,2,32,37,17)(5,33,40,16)(6,28,14,21,8,29,12,24,9,27,11,23,7,26,13,25)(10,30,15,22), (1,19,14,26,2,17,12,28,3,20,15,30,4,18,13,27,5,16,11,29)(6,31,39,24,7,34,40,21,8,32,36,23,9,35,37,25,10,33,38,22), (1,23,40,29,3,25,38,26,4,21,37,27,2,24,39,30)(5,22,36,28)(6,17,13,34,9,19,15,33,8,20,11,35,10,18,14,31)(7,16,12,32) );
 
Copy content sage:G = PermutationGroup(['(1,35,36,19,3,34,38,20,4,31,39,18,2,32,37,17)(5,33,40,16)(6,28,14,21,8,29,12,24,9,27,11,23,7,26,13,25)(10,30,15,22)', '(1,19,14,26,2,17,12,28,3,20,15,30,4,18,13,27,5,16,11,29)(6,31,39,24,7,34,40,21,8,32,36,23,9,35,37,25,10,33,38,22)', '(1,23,40,29,3,25,38,26,4,21,37,27,2,24,39,30)(5,22,36,28)(6,17,13,34,9,19,15,33,8,20,11,35,10,18,14,31)(7,16,12,32)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1835169827652864939868573280120817543961925855228677115345353122922577808942445652515417923022470389128703763675637217662615900982940146910915673005685479062027803061628707594481837216657207622335869307037161738572315507180944745525049075627751388409571095924258907281186207152688975496157812463884710001302655078168195051404642013889277847402057939516670481712388257914209132935450084170594028658382326611066105496840887904829761883114376975513375925162636560593094199189762700201498705972191646269462017750126912274613974633432307307090878526886151023295799790079185282783792270840359309448282111746662405929642449415676664634395116326903651292404514794145271947398781549461955718447076798770053221634584404218030123973269871962538521292609037819876538085083839927595095840454595162507654902255679790355981488538647987539547916211644167682086479902495046702785472567130796650669451526398204296173624437414479867233668900378500749779259567017987434333464389185092653342881503097192137428015271953280844403162485279865561322358765978833123074447879616224417117406854818944056070668043830542004192243507953169003537215887433385969091806263804529754362865395466314698433832425841223692490896980267190708940801919619800949372048601690263693789057632969440171075652139956066549917593667330529065365437779697299775298100432844141596119725558231647857054576158981952854482924378608411856556852900794024876476078278607271341300658218333373668503638577766135150573819630672153028950093024005385238853290857110475973374477480512178570177751357580251979551507772094373198011966121631755109351570118661890670249582476496953478123176568703514029602148548908793149500873294315576376933972580542706532709175123080523621115953762691807467442625367198505950900072347808767,3200000000)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.10; g = G.12; h = G.14; i = G.16; j = G.18; k = G.19; l = G.20; m = G.21;
 

Group information

Description:$C_5^7.(C_2^3\times F_5).C_2^6:C_4$
Order: \(3200000000\)\(\medspace = 2^{13} \cdot 5^{8} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(25600000000\)\(\medspace = 2^{16} \cdot 5^{8} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 13, $C_5$ x 8
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 4 5 8 10 16 20 40
Elements 1 1127775 211620000 390624 750400000 135981600 800000000 1050880000 249600000 3200000000
Conjugacy classes   1 23 62 157 38 684 16 189 32 1202
Divisions 1 23 49 157 23 684 4 150 16 1107
Autjugacy classes 1 20 46 75 15 316 2 85 12 572

Minimal presentations

Permutation degree:$40$
Transitive degree:not computed
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m \mid f^{10}=g^{10}=h^{10}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([21, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 5, 2, 5, 2, 5, 5, 5, 5, 5, 42, 62671949110, 8724227654, 3687543617, 170, 90248751267, 25165217640, 271176258, 145905932764, 5813009185, 40008788026, 3124084597, 298, 317580806597, 174919967738, 6974707871, 25160035388, 4855777022, 181828274886, 219846374523, 36606883200, 11101838733, 11591984382, 11479331541, 426, 193384418311, 18187491868, 75105983281, 60383234758, 22465488283, 8957491984, 4119628954, 65821655600, 190913986397, 109146471890, 22337017991, 29159248196, 17732743673, 6587186894, 588168533, 1331316176, 463848740889, 318144059550, 1489857651, 30893486472, 1142092653, 4717718994, 1395543375, 2022720996, 1479243957, 618, 455448913930, 173978466847, 94565619508, 80014556233, 16646843230, 9010870291, 4531776616, 3063986005, 2672211874, 329296891403, 161426151968, 181156840757, 73544615498, 13486600607, 21703570676, 9835362569, 2439773438, 2672213219, 184486880, 728785481, 746, 546248521740, 59852083233, 161315481654, 76247912907, 6174604896, 13497382197, 7460552874, 6693981999, 3341531100, 458662041, 773189179405, 34346594722, 125409458551, 101457753676, 12158186641, 10218499318, 10504267339, 3045957760, 2094514981, 156437602, 147602923, 138500704, 874, 113223075854, 54842135075, 129443328056, 95360832077, 12580323938, 15576624119, 4208904140, 7724052161, 3855726182, 3213203, 52630445, 1042727263887, 274976701476, 130163335737, 35990169678, 48281904483, 30196992120, 15394848141, 4662336162, 477792183, 716016204, 499128225, 83294646, 28073067, 3222528, 253989, 1002, 36703027216, 433198080037, 260375899450, 11424000079, 342720100, 22848121, 2142000142, 11424163, 285847, 28849, 935940870161, 96768000038, 291755520059, 114670080080, 96768101, 120960122, 9253440143, 60480164, 15120206, 15452, 534842735634, 416747928615, 233429683260, 154768588881, 66291481638, 29430240123, 5173593744, 2745120165, 1380540186, 35910207, 242592249, 80133, 326860800019, 2150400040, 166119475261, 161280082, 63705600103, 3360000124, 20160145, 1680000166, 42000250, 4200292, 420334, 947875267604, 157152135209, 169912995902, 170038310483, 5503736552, 28365120125, 5590468946, 3157560167, 568890209, 220941251, 7717793, 2205335]); a,b,c,d,e,f,g,h,i,j,k,l,m := Explode([G.1, G.3, G.5, G.7, G.9, G.10, G.12, G.14, G.16, G.18, G.19, G.20, G.21]); AssignNames(~G, ["a", "a2", "b", "b2", "c", "c2", "d", "d2", "e", "f", "f2", "g", "g2", "h", "h2", "i", "i2", "j", "k", "l", "m"]);
 
Copy content gap:G := PcGroupCode(1835169827652864939868573280120817543961925855228677115345353122922577808942445652515417923022470389128703763675637217662615900982940146910915673005685479062027803061628707594481837216657207622335869307037161738572315507180944745525049075627751388409571095924258907281186207152688975496157812463884710001302655078168195051404642013889277847402057939516670481712388257914209132935450084170594028658382326611066105496840887904829761883114376975513375925162636560593094199189762700201498705972191646269462017750126912274613974633432307307090878526886151023295799790079185282783792270840359309448282111746662405929642449415676664634395116326903651292404514794145271947398781549461955718447076798770053221634584404218030123973269871962538521292609037819876538085083839927595095840454595162507654902255679790355981488538647987539547916211644167682086479902495046702785472567130796650669451526398204296173624437414479867233668900378500749779259567017987434333464389185092653342881503097192137428015271953280844403162485279865561322358765978833123074447879616224417117406854818944056070668043830542004192243507953169003537215887433385969091806263804529754362865395466314698433832425841223692490896980267190708940801919619800949372048601690263693789057632969440171075652139956066549917593667330529065365437779697299775298100432844141596119725558231647857054576158981952854482924378608411856556852900794024876476078278607271341300658218333373668503638577766135150573819630672153028950093024005385238853290857110475973374477480512178570177751357580251979551507772094373198011966121631755109351570118661890670249582476496953478123176568703514029602148548908793149500873294315576376933972580542706532709175123080523621115953762691807467442625367198505950900072347808767,3200000000); a := G.1; b := G.3; c := G.5; d := G.7; e := G.9; f := G.10; g := G.12; h := G.14; i := G.16; j := G.18; k := G.19; l := G.20; m := G.21;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1835169827652864939868573280120817543961925855228677115345353122922577808942445652515417923022470389128703763675637217662615900982940146910915673005685479062027803061628707594481837216657207622335869307037161738572315507180944745525049075627751388409571095924258907281186207152688975496157812463884710001302655078168195051404642013889277847402057939516670481712388257914209132935450084170594028658382326611066105496840887904829761883114376975513375925162636560593094199189762700201498705972191646269462017750126912274613974633432307307090878526886151023295799790079185282783792270840359309448282111746662405929642449415676664634395116326903651292404514794145271947398781549461955718447076798770053221634584404218030123973269871962538521292609037819876538085083839927595095840454595162507654902255679790355981488538647987539547916211644167682086479902495046702785472567130796650669451526398204296173624437414479867233668900378500749779259567017987434333464389185092653342881503097192137428015271953280844403162485279865561322358765978833123074447879616224417117406854818944056070668043830542004192243507953169003537215887433385969091806263804529754362865395466314698433832425841223692490896980267190708940801919619800949372048601690263693789057632969440171075652139956066549917593667330529065365437779697299775298100432844141596119725558231647857054576158981952854482924378608411856556852900794024876476078278607271341300658218333373668503638577766135150573819630672153028950093024005385238853290857110475973374477480512178570177751357580251979551507772094373198011966121631755109351570118661890670249582476496953478123176568703514029602148548908793149500873294315576376933972580542706532709175123080523621115953762691807467442625367198505950900072347808767,3200000000)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.10; g = G.12; h = G.14; i = G.16; j = G.18; k = G.19; l = G.20; m = G.21;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1835169827652864939868573280120817543961925855228677115345353122922577808942445652515417923022470389128703763675637217662615900982940146910915673005685479062027803061628707594481837216657207622335869307037161738572315507180944745525049075627751388409571095924258907281186207152688975496157812463884710001302655078168195051404642013889277847402057939516670481712388257914209132935450084170594028658382326611066105496840887904829761883114376975513375925162636560593094199189762700201498705972191646269462017750126912274613974633432307307090878526886151023295799790079185282783792270840359309448282111746662405929642449415676664634395116326903651292404514794145271947398781549461955718447076798770053221634584404218030123973269871962538521292609037819876538085083839927595095840454595162507654902255679790355981488538647987539547916211644167682086479902495046702785472567130796650669451526398204296173624437414479867233668900378500749779259567017987434333464389185092653342881503097192137428015271953280844403162485279865561322358765978833123074447879616224417117406854818944056070668043830542004192243507953169003537215887433385969091806263804529754362865395466314698433832425841223692490896980267190708940801919619800949372048601690263693789057632969440171075652139956066549917593667330529065365437779697299775298100432844141596119725558231647857054576158981952854482924378608411856556852900794024876476078278607271341300658218333373668503638577766135150573819630672153028950093024005385238853290857110475973374477480512178570177751357580251979551507772094373198011966121631755109351570118661890670249582476496953478123176568703514029602148548908793149500873294315576376933972580542706532709175123080523621115953762691807467442625367198505950900072347808767,3200000000)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.10; g = G.12; h = G.14; i = G.16; j = G.18; k = G.19; l = G.20; m = G.21;
 
Permutation group:Degree $40$ $\langle(1,35,36,19,3,34,38,20,4,31,39,18,2,32,37,17)(5,33,40,16)(6,28,14,21,8,29,12,24,9,27,11,23,7,26,13,25) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 40 | (1,35,36,19,3,34,38,20,4,31,39,18,2,32,37,17)(5,33,40,16)(6,28,14,21,8,29,12,24,9,27,11,23,7,26,13,25)(10,30,15,22), (1,19,14,26,2,17,12,28,3,20,15,30,4,18,13,27,5,16,11,29)(6,31,39,24,7,34,40,21,8,32,36,23,9,35,37,25,10,33,38,22), (1,23,40,29,3,25,38,26,4,21,37,27,2,24,39,30)(5,22,36,28)(6,17,13,34,9,19,15,33,8,20,11,35,10,18,14,31)(7,16,12,32) >;
 
Copy content gap:G := Group( (1,35,36,19,3,34,38,20,4,31,39,18,2,32,37,17)(5,33,40,16)(6,28,14,21,8,29,12,24,9,27,11,23,7,26,13,25)(10,30,15,22), (1,19,14,26,2,17,12,28,3,20,15,30,4,18,13,27,5,16,11,29)(6,31,39,24,7,34,40,21,8,32,36,23,9,35,37,25,10,33,38,22), (1,23,40,29,3,25,38,26,4,21,37,27,2,24,39,30)(5,22,36,28)(6,17,13,34,9,19,15,33,8,20,11,35,10,18,14,31)(7,16,12,32) );
 
Copy content sage:G = PermutationGroup(['(1,35,36,19,3,34,38,20,4,31,39,18,2,32,37,17)(5,33,40,16)(6,28,14,21,8,29,12,24,9,27,11,23,7,26,13,25)(10,30,15,22)', '(1,19,14,26,2,17,12,28,3,20,15,30,4,18,13,27,5,16,11,29)(6,31,39,24,7,34,40,21,8,32,36,23,9,35,37,25,10,33,38,22)', '(1,23,40,29,3,25,38,26,4,21,37,27,2,24,39,30)(5,22,36,28)(6,17,13,34,9,19,15,33,8,20,11,35,10,18,14,31)(7,16,12,32)'])
 
Transitive group: 40T262898 40T266040 40T266213 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_5^8.C_2^6.C_2^3)$ . $D_8$ (2) $(C_5^8.C_2^6)$ . $(C_2^3.D_8)$ $(C_5^8.C_2^5)$ . $(C_2^5.D_4)$ (2) $(C_5^8.C_2^5)$ . $(C_2^4.D_8)$ all 104

Elements of the group are displayed as permutations of degree 40.

Homology

Abelianization: $C_{2}^{2} \times C_{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 207 normal subgroups (111 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^2.C_2^6.C_2^3.C_2^2$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5^8$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 7 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $1202 \times 1202$ character table is not available for this group.

Rational character table

The $1107 \times 1107$ rational character table is not available for this group.