Properties

Label 3200000000.ion
Order \( 2^{13} \cdot 5^{8} \)
Exponent \( 2^{4} \cdot 5 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{4} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{17} \cdot 5^{8} \)
$\card{\mathrm{Out}(G)}$ \( 2^{4} \)
Perm deg. $40$
Trans deg. not computed
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 40 | (1,5)(2,4)(6,10)(7,9)(11,12)(13,15)(16,34,17,33,18,32,19,31,20,35)(21,26,24,28,22,30,25,27,23,29)(36,39)(37,38), (1,24,36,18)(2,25,37,19,4,22,39,16,5,23,40,17,3,21,38,20)(6,30,14,35,8,29,11,31,9,26,12,34,7,27,15,33)(10,28,13,32), (1,18,9,32,2,19,7,33,3,20,10,34,4,16,8,35,5,17,6,31)(11,27,40,24,12,28,39,21,13,29,38,23,14,30,37,25,15,26,36,22) >;
 
Copy content gap:G := Group( (1,5)(2,4)(6,10)(7,9)(11,12)(13,15)(16,34,17,33,18,32,19,31,20,35)(21,26,24,28,22,30,25,27,23,29)(36,39)(37,38), (1,24,36,18)(2,25,37,19,4,22,39,16,5,23,40,17,3,21,38,20)(6,30,14,35,8,29,11,31,9,26,12,34,7,27,15,33)(10,28,13,32), (1,18,9,32,2,19,7,33,3,20,10,34,4,16,8,35,5,17,6,31)(11,27,40,24,12,28,39,21,13,29,38,23,14,30,37,25,15,26,36,22) );
 
Copy content sage:G = PermutationGroup(['(1,5)(2,4)(6,10)(7,9)(11,12)(13,15)(16,34,17,33,18,32,19,31,20,35)(21,26,24,28,22,30,25,27,23,29)(36,39)(37,38)', '(1,24,36,18)(2,25,37,19,4,22,39,16,5,23,40,17,3,21,38,20)(6,30,14,35,8,29,11,31,9,26,12,34,7,27,15,33)(10,28,13,32)', '(1,18,9,32,2,19,7,33,3,20,10,34,4,16,8,35,5,17,6,31)(11,27,40,24,12,28,39,21,13,29,38,23,14,30,37,25,15,26,36,22)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(6305595513900009071378943805970306283781846999905106776835403523636162495108388643847994260985351613046886516293733753200366944068232438002435985123900000249040421506618310921587463926285390701607403708203086482950528518489900879375201131335338322124274425520376986041453303019256461345807720857103447526258986535762786285583669368684796664148422762278646982220051684237857251389230327820376841426793354935005055338196445987826053408807119722479911861986061225308396933608284683896397651341323749181488208039557490756244388941097688658351053024714948567560561072377632370806170842494636515533902584880514401524010323629955449072114597318142189276653843576158600803035177429334711948549451449392774411915085365761791045748663811620143835298276362334718835640785329981137111580299036316574160168677508737964295577480971895003344076927529279434810303227371823695838173399971627188490120780777778249419954936966690932198921779965825355236136703353208034255910538626381338850479078828013321699721450266240308230578612195558811739220961516321431840574150063008654639720147608373902842843236036071946380231818450387671635580867484526683594688766706961423041891697905222375116049363420725827343108421538170533384136451376317334549573804322446139196368892456878194214806318596550166652613395077023218474929244196900140880676291031720624524139064739587779451157657853310714906022129040169306316888763092364885386083834198879132346926677686208664410591682395561068310518855952139905957548504676518471913822885037501260344721414450592623441016337890963925907643648103405448063896428377416789227685285839247331714781052183299564216771111071151438604679142782283149009831012624709641376257596465727124720607891464441671164565227845952587337630253474548900622623493311112730880467051075860127119622551782854817550470685645955026417143039,3200000000)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.11; g = G.13; h = G.15; i = G.17; j = G.19; k = G.20; l = G.21;
 

Group information

Description:$C_5^6.(C_2\times F_5^2).D_4^2:C_4$
Order: \(3200000000\)\(\medspace = 2^{13} \cdot 5^{8} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(51200000000\)\(\medspace = 2^{17} \cdot 5^{8} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 13, $C_5$ x 8
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 4 5 8 10 16 20 40
Elements 1 1025375 214180000 390624 520000000 136084000 800000000 1048320000 480000000 3200000000
Conjugacy classes   1 22 77 145 48 523 16 228 40 1100
Divisions 1 22 63 145 28 523 4 196 24 1006
Autjugacy classes 1 15 43 44 15 159 2 76 9 364

Minimal presentations

Permutation degree:$40$
Transitive degree:not computed
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l \mid d^{4}=e^{10}=g^{10}=h^{10}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([21, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 5, 2, 5, 2, 5, 2, 5, 5, 5, 5, 42, 35386346710, 95606858846, 76500662513, 170, 196559162019, 126274977384, 26364887874, 114133232224, 78490970065, 14540866, 27511836517, 298, 183934998581, 26781223418, 27969860063, 48653692988, 3112807430, 347512366494, 85838982459, 85453115712, 53648274525, 1322079870, 7080042549, 426, 132762620935, 216944405020, 88624053553, 30859748038, 18931053211, 16241114512, 423695338928, 53821043165, 113306491922, 58944418919, 3812742452, 3870724649, 8121108626, 1840409957, 554, 175507153929, 255539558430, 28306252851, 15321613512, 11856902493, 8433610194, 3495, 3516, 571147745794, 219475931167, 115568760436, 56244504697, 28212081838, 11505859711, 10908771856, 1703897737, 318962668, 363364354, 682, 553796070923, 62076801056, 47134112309, 8435750474, 38660864351, 19318723316, 3568380617, 2046532478, 821666339, 950042720, 95010542, 867037831308, 104213491233, 38579224374, 40762403211, 30785751456, 8798348949, 8764719738, 6279491559, 2535869880, 1029223851, 197676792, 35218608, 810, 668344320013, 21999667234, 180003640375, 37839371212, 9530492257, 22499434390, 1814097739, 470560, 595879381, 23743, 549568776974, 365609664035, 232354886456, 14404360397, 30467203298, 27838445159, 10466820140, 131670161, 2173815182, 1181407703, 370093724, 106170995, 13359416, 938, 233964208143, 38036275236, 113972920377, 129540182094, 51182530659, 19041802872, 1349376141, 5376162, 168672183, 19757025, 9777846, 1955787, 66067074040, 364219968037, 125104224058, 72776592079, 34443360100, 1685040121, 8667960142, 2920260163, 3752070184, 1340535205, 345951076, 135481747, 18171568, 360880, 359116, 1066, 343333057553, 362880000038, 123379200059, 24192000080, 362880101, 241920122, 60480143, 60480164, 56700227, 1512248, 302669, 109175592978, 54136320039, 53114880060, 5107200081, 64478400102, 8458800144, 319200165, 1157100186, 11970228, 7980249, 1596270, 159912, 403344, 914780805139, 424704000040, 201600000061, 1075200082, 6720000103, 6720000124, 2520000145, 1680000166, 840000187, 2520229, 42000250, 8400271, 84355, 905985884180, 1128960041, 1693440062, 39513600083, 70560000104, 8820000146, 8820000167, 224910230, 220500251, 44100272, 4410314, 441356]); a,b,c,d,e,f,g,h,i,j,k,l := Explode([G.1, G.3, G.5, G.7, G.9, G.11, G.13, G.15, G.17, G.19, G.20, G.21]); AssignNames(~G, ["a", "a2", "b", "b2", "c", "c2", "d", "d2", "e", "e2", "f", "f2", "g", "g2", "h", "h2", "i", "i2", "j", "k", "l"]);
 
Copy content gap:G := PcGroupCode(6305595513900009071378943805970306283781846999905106776835403523636162495108388643847994260985351613046886516293733753200366944068232438002435985123900000249040421506618310921587463926285390701607403708203086482950528518489900879375201131335338322124274425520376986041453303019256461345807720857103447526258986535762786285583669368684796664148422762278646982220051684237857251389230327820376841426793354935005055338196445987826053408807119722479911861986061225308396933608284683896397651341323749181488208039557490756244388941097688658351053024714948567560561072377632370806170842494636515533902584880514401524010323629955449072114597318142189276653843576158600803035177429334711948549451449392774411915085365761791045748663811620143835298276362334718835640785329981137111580299036316574160168677508737964295577480971895003344076927529279434810303227371823695838173399971627188490120780777778249419954936966690932198921779965825355236136703353208034255910538626381338850479078828013321699721450266240308230578612195558811739220961516321431840574150063008654639720147608373902842843236036071946380231818450387671635580867484526683594688766706961423041891697905222375116049363420725827343108421538170533384136451376317334549573804322446139196368892456878194214806318596550166652613395077023218474929244196900140880676291031720624524139064739587779451157657853310714906022129040169306316888763092364885386083834198879132346926677686208664410591682395561068310518855952139905957548504676518471913822885037501260344721414450592623441016337890963925907643648103405448063896428377416789227685285839247331714781052183299564216771111071151438604679142782283149009831012624709641376257596465727124720607891464441671164565227845952587337630253474548900622623493311112730880467051075860127119622551782854817550470685645955026417143039,3200000000); a := G.1; b := G.3; c := G.5; d := G.7; e := G.9; f := G.11; g := G.13; h := G.15; i := G.17; j := G.19; k := G.20; l := G.21;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(6305595513900009071378943805970306283781846999905106776835403523636162495108388643847994260985351613046886516293733753200366944068232438002435985123900000249040421506618310921587463926285390701607403708203086482950528518489900879375201131335338322124274425520376986041453303019256461345807720857103447526258986535762786285583669368684796664148422762278646982220051684237857251389230327820376841426793354935005055338196445987826053408807119722479911861986061225308396933608284683896397651341323749181488208039557490756244388941097688658351053024714948567560561072377632370806170842494636515533902584880514401524010323629955449072114597318142189276653843576158600803035177429334711948549451449392774411915085365761791045748663811620143835298276362334718835640785329981137111580299036316574160168677508737964295577480971895003344076927529279434810303227371823695838173399971627188490120780777778249419954936966690932198921779965825355236136703353208034255910538626381338850479078828013321699721450266240308230578612195558811739220961516321431840574150063008654639720147608373902842843236036071946380231818450387671635580867484526683594688766706961423041891697905222375116049363420725827343108421538170533384136451376317334549573804322446139196368892456878194214806318596550166652613395077023218474929244196900140880676291031720624524139064739587779451157657853310714906022129040169306316888763092364885386083834198879132346926677686208664410591682395561068310518855952139905957548504676518471913822885037501260344721414450592623441016337890963925907643648103405448063896428377416789227685285839247331714781052183299564216771111071151438604679142782283149009831012624709641376257596465727124720607891464441671164565227845952587337630253474548900622623493311112730880467051075860127119622551782854817550470685645955026417143039,3200000000)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.11; g = G.13; h = G.15; i = G.17; j = G.19; k = G.20; l = G.21;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(6305595513900009071378943805970306283781846999905106776835403523636162495108388643847994260985351613046886516293733753200366944068232438002435985123900000249040421506618310921587463926285390701607403708203086482950528518489900879375201131335338322124274425520376986041453303019256461345807720857103447526258986535762786285583669368684796664148422762278646982220051684237857251389230327820376841426793354935005055338196445987826053408807119722479911861986061225308396933608284683896397651341323749181488208039557490756244388941097688658351053024714948567560561072377632370806170842494636515533902584880514401524010323629955449072114597318142189276653843576158600803035177429334711948549451449392774411915085365761791045748663811620143835298276362334718835640785329981137111580299036316574160168677508737964295577480971895003344076927529279434810303227371823695838173399971627188490120780777778249419954936966690932198921779965825355236136703353208034255910538626381338850479078828013321699721450266240308230578612195558811739220961516321431840574150063008654639720147608373902842843236036071946380231818450387671635580867484526683594688766706961423041891697905222375116049363420725827343108421538170533384136451376317334549573804322446139196368892456878194214806318596550166652613395077023218474929244196900140880676291031720624524139064739587779451157657853310714906022129040169306316888763092364885386083834198879132346926677686208664410591682395561068310518855952139905957548504676518471913822885037501260344721414450592623441016337890963925907643648103405448063896428377416789227685285839247331714781052183299564216771111071151438604679142782283149009831012624709641376257596465727124720607891464441671164565227845952587337630253474548900622623493311112730880467051075860127119622551782854817550470685645955026417143039,3200000000)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.11; g = G.13; h = G.15; i = G.17; j = G.19; k = G.20; l = G.21;
 
Permutation group:Degree $40$ $\langle(1,5)(2,4)(6,10)(7,9)(11,12)(13,15)(16,34,17,33,18,32,19,31,20,35)(21,26,24,28,22,30,25,27,23,29) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 40 | (1,5)(2,4)(6,10)(7,9)(11,12)(13,15)(16,34,17,33,18,32,19,31,20,35)(21,26,24,28,22,30,25,27,23,29)(36,39)(37,38), (1,24,36,18)(2,25,37,19,4,22,39,16,5,23,40,17,3,21,38,20)(6,30,14,35,8,29,11,31,9,26,12,34,7,27,15,33)(10,28,13,32), (1,18,9,32,2,19,7,33,3,20,10,34,4,16,8,35,5,17,6,31)(11,27,40,24,12,28,39,21,13,29,38,23,14,30,37,25,15,26,36,22) >;
 
Copy content gap:G := Group( (1,5)(2,4)(6,10)(7,9)(11,12)(13,15)(16,34,17,33,18,32,19,31,20,35)(21,26,24,28,22,30,25,27,23,29)(36,39)(37,38), (1,24,36,18)(2,25,37,19,4,22,39,16,5,23,40,17,3,21,38,20)(6,30,14,35,8,29,11,31,9,26,12,34,7,27,15,33)(10,28,13,32), (1,18,9,32,2,19,7,33,3,20,10,34,4,16,8,35,5,17,6,31)(11,27,40,24,12,28,39,21,13,29,38,23,14,30,37,25,15,26,36,22) );
 
Copy content sage:G = PermutationGroup(['(1,5)(2,4)(6,10)(7,9)(11,12)(13,15)(16,34,17,33,18,32,19,31,20,35)(21,26,24,28,22,30,25,27,23,29)(36,39)(37,38)', '(1,24,36,18)(2,25,37,19,4,22,39,16,5,23,40,17,3,21,38,20)(6,30,14,35,8,29,11,31,9,26,12,34,7,27,15,33)(10,28,13,32)', '(1,18,9,32,2,19,7,33,3,20,10,34,4,16,8,35,5,17,6,31)(11,27,40,24,12,28,39,21,13,29,38,23,14,30,37,25,15,26,36,22)'])
 
Transitive group: 40T262254 40T266527 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_5^8.C_2^4.C_2^5)$ . $D_8$ (2) $(C_5^8.C_2^5)$ . $(C_2^4.D_8)$ (2) $(C_5^8.C_2^5)$ . $(C_2^6:C_4)$ $(C_5^8.C_2^4.C_2^5)$ . $\SD_{16}$ (2) all 83

Elements of the group are displayed as permutations of degree 40.

Homology

Abelianization: $C_{2}^{2} \times C_{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 191 normal subgroups (79 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^4.C_2^5.C_2^3.C_2$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5^8$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 15 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $1100 \times 1100$ character table is not available for this group.

Rational character table

The $1006 \times 1006$ rational character table is not available for this group.