Properties

Label 3200000000.dor
Order \( 2^{13} \cdot 5^{8} \)
Exponent \( 2^{4} \cdot 5 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{4} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{16} \cdot 5^{8} \)
$\card{\mathrm{Out}(G)}$ \( 2^{3} \)
Perm deg. $40$
Trans deg. not computed
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 40 | (1,9,3,10)(2,7)(4,8,5,6)(11,40)(12,38)(13,36)(14,39)(15,37)(16,33)(17,32)(18,31)(19,35)(20,34)(21,26,24,28)(22,30,23,29)(25,27), (1,22,37,17,3,24,36,19,5,21,40,16,2,23,39,18,4,25,38,20)(6,26,12,31,10,28,15,35,9,30,13,34,8,27,11,33,7,29,14,32), (1,5)(2,4)(6,9,7,10,8)(11,12,13,14,15)(16,22,20,21,19,25,18,24,17,23)(26,31,30,35,29,34,28,33,27,32)(37,40)(38,39) >;
 
Copy content gap:G := Group( (1,9,3,10)(2,7)(4,8,5,6)(11,40)(12,38)(13,36)(14,39)(15,37)(16,33)(17,32)(18,31)(19,35)(20,34)(21,26,24,28)(22,30,23,29)(25,27), (1,22,37,17,3,24,36,19,5,21,40,16,2,23,39,18,4,25,38,20)(6,26,12,31,10,28,15,35,9,30,13,34,8,27,11,33,7,29,14,32), (1,5)(2,4)(6,9,7,10,8)(11,12,13,14,15)(16,22,20,21,19,25,18,24,17,23)(26,31,30,35,29,34,28,33,27,32)(37,40)(38,39) );
 
Copy content sage:G = PermutationGroup(['(1,9,3,10)(2,7)(4,8,5,6)(11,40)(12,38)(13,36)(14,39)(15,37)(16,33)(17,32)(18,31)(19,35)(20,34)(21,26,24,28)(22,30,23,29)(25,27)', '(1,22,37,17,3,24,36,19,5,21,40,16,2,23,39,18,4,25,38,20)(6,26,12,31,10,28,15,35,9,30,13,34,8,27,11,33,7,29,14,32)', '(1,5)(2,4)(6,9,7,10,8)(11,12,13,14,15)(16,22,20,21,19,25,18,24,17,23)(26,31,30,35,29,34,28,33,27,32)(37,40)(38,39)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(48576540869655393413815576343768717563065988755250233745478695310540365959507741320186833690920041206322990128362304422623774687016343941791656689448388985908175313614829909908356893342800628060160465683615166220573175938769461081487098435590436844166903497829258693611881307987318636607689526020683150600294123862365157118997921035791341140871725689496018862468197997466125156359921487468182301265312377713286900049417822852975349631975157597868980936691788128994631994667151664699433820078051295485205929580017193201657127927356092393628253296132908867714020893998470098334204370867131101707739961805167676194582115269918465262812886319316382631189471419022938452428879849565322221890854957082476046305074366276354837553728046063684904295085477614406511709431115723334059298989013379094322118392848053458677845326629425819409900694568159287171471618205927489780988048996284229739746840734179142634750258919075898300614325352964211467216848703878246198167491660944330038830640497561588777993684135762816857678904361327883062841275676997098166469372501405900657573038272586259719699242593225465741203438939754663317462389546896910831131762282937666985471247201189565762457502695715943007721190132371737607286735367333641672149240365397826040554946565526313563404881024794147110939345605684390608639591485168068651813498181142309632619479153903080808241229186628629112336049531270160605303131647021193646684571054775477263709122697517515103516610512716177557341536260613127573053952829490162980302098889894547045934169537153723740815291839052663486499199184014561259496075401862887443047984331416096025044662304767,3200000000)'); a = G.1; b = G.3; c = G.4; d = G.5; e = G.7; f = G.8; g = G.10; h = G.12; i = G.14; j = G.16; k = G.17; l = G.18; m = G.19; n = G.20; o = G.21;
 

Group information

Description:$C_5^6.(C_2\times F_5^2).D_4^2:C_4$
Order: \(3200000000\)\(\medspace = 2^{13} \cdot 5^{8} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(25600000000\)\(\medspace = 2^{16} \cdot 5^{8} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 13, $C_5$ x 8
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 4 5 8 10 16 20 40
Elements 1 817375 149140000 390624 804000000 86292000 400000000 863360000 896000000 3200000000
Conjugacy classes   1 14 75 118 55 325 4 220 60 872
Divisions 1 14 58 118 26 325 1 152 26 721
Autjugacy classes 1 14 70 54 34 157 1 182 29 542

Minimal presentations

Permutation degree:$40$
Transitive degree:not computed
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o \mid f^{4}=g^{4}=h^{10}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([21, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 5, 5, 5, 5, 5, 5, 5, 42, 2645938198, 4286, 58590709781, 49191819308, 2019, 134190642792, 64429107669, 9464850, 322101123124, 43017274465, 10871619826, 23020694617, 298, 274264804805, 68329112570, 80510985119, 8399721020, 1009612910, 2604783558, 159180523515, 45569644896, 21968069325, 19860679110, 11737802229, 4243610244, 519394993159, 52050722332, 131181469489, 22556091334, 5914461595, 2527365904, 2325131893, 490, 294647189768, 24200152733, 54434528114, 63506328551, 1512486956, 1512969305, 7938037178, 312566177289, 299938813470, 71778457011, 7988023752, 24430163613, 14810077074, 6603762615, 618, 537554992138, 123760412191, 69487934260, 53336443849, 14662194718, 19655631187, 10127827384, 418689847307, 45809971232, 75809986613, 66087608906, 2822432351, 2782096244, 11048204297, 12254, 18323, 3224, 4757, 746, 1397760012, 11182113, 2795574, 4368000075, 174858, 26367, 17652, 6753, 4590, 387504606733, 413969461282, 37640429623, 94087084300, 2353129057, 2353693558, 1176526987, 1176329440, 147211861, 147082522, 36803143, 18378184, 874, 35481600014, 1935395, 322616, 95760000077, 2419298, 1612919, 20300, 201761, 201782, 50603, 50624, 817152000015, 276599930916, 68812857, 860160078, 12355983501, 403404, 269025, 4081201168, 5688969253, 210118250554, 120806149711, 26133542500, 5817100921, 23350798, 7799964643, 2143485304, 2033186605, 1428226, 286671247, 26793139, 30965777, 18385920038, 38707280, 483840101, 665280143, 60480164, 7560206, 7560227, 3780248, 68640786, 41680880721, 2170560102, 1532160123, 574560144, 319200165, 71820207, 39900228, 19950249, 344064019, 295680000040, 147840000061, 860242, 15960000145, 1260000166, 840000187, 210000208, 210000229, 105000250, 10500292, 1395069419540, 564480000041, 282240000062, 5193299, 45864000104, 42336000125, 5292000167, 4410000188, 1984500209, 1102500230, 551250251, 55125293]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o := Explode([G.1, G.3, G.4, G.5, G.7, G.8, G.10, G.12, G.14, G.16, G.17, G.18, G.19, G.20, G.21]); AssignNames(~G, ["a", "a2", "b", "c", "d", "d2", "e", "f", "f2", "g", "g2", "h", "h2", "i", "i2", "j", "k", "l", "m", "n", "o"]);
 
Copy content gap:G := PcGroupCode(48576540869655393413815576343768717563065988755250233745478695310540365959507741320186833690920041206322990128362304422623774687016343941791656689448388985908175313614829909908356893342800628060160465683615166220573175938769461081487098435590436844166903497829258693611881307987318636607689526020683150600294123862365157118997921035791341140871725689496018862468197997466125156359921487468182301265312377713286900049417822852975349631975157597868980936691788128994631994667151664699433820078051295485205929580017193201657127927356092393628253296132908867714020893998470098334204370867131101707739961805167676194582115269918465262812886319316382631189471419022938452428879849565322221890854957082476046305074366276354837553728046063684904295085477614406511709431115723334059298989013379094322118392848053458677845326629425819409900694568159287171471618205927489780988048996284229739746840734179142634750258919075898300614325352964211467216848703878246198167491660944330038830640497561588777993684135762816857678904361327883062841275676997098166469372501405900657573038272586259719699242593225465741203438939754663317462389546896910831131762282937666985471247201189565762457502695715943007721190132371737607286735367333641672149240365397826040554946565526313563404881024794147110939345605684390608639591485168068651813498181142309632619479153903080808241229186628629112336049531270160605303131647021193646684571054775477263709122697517515103516610512716177557341536260613127573053952829490162980302098889894547045934169537153723740815291839052663486499199184014561259496075401862887443047984331416096025044662304767,3200000000); a := G.1; b := G.3; c := G.4; d := G.5; e := G.7; f := G.8; g := G.10; h := G.12; i := G.14; j := G.16; k := G.17; l := G.18; m := G.19; n := G.20; o := G.21;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(48576540869655393413815576343768717563065988755250233745478695310540365959507741320186833690920041206322990128362304422623774687016343941791656689448388985908175313614829909908356893342800628060160465683615166220573175938769461081487098435590436844166903497829258693611881307987318636607689526020683150600294123862365157118997921035791341140871725689496018862468197997466125156359921487468182301265312377713286900049417822852975349631975157597868980936691788128994631994667151664699433820078051295485205929580017193201657127927356092393628253296132908867714020893998470098334204370867131101707739961805167676194582115269918465262812886319316382631189471419022938452428879849565322221890854957082476046305074366276354837553728046063684904295085477614406511709431115723334059298989013379094322118392848053458677845326629425819409900694568159287171471618205927489780988048996284229739746840734179142634750258919075898300614325352964211467216848703878246198167491660944330038830640497561588777993684135762816857678904361327883062841275676997098166469372501405900657573038272586259719699242593225465741203438939754663317462389546896910831131762282937666985471247201189565762457502695715943007721190132371737607286735367333641672149240365397826040554946565526313563404881024794147110939345605684390608639591485168068651813498181142309632619479153903080808241229186628629112336049531270160605303131647021193646684571054775477263709122697517515103516610512716177557341536260613127573053952829490162980302098889894547045934169537153723740815291839052663486499199184014561259496075401862887443047984331416096025044662304767,3200000000)'); a = G.1; b = G.3; c = G.4; d = G.5; e = G.7; f = G.8; g = G.10; h = G.12; i = G.14; j = G.16; k = G.17; l = G.18; m = G.19; n = G.20; o = G.21;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(48576540869655393413815576343768717563065988755250233745478695310540365959507741320186833690920041206322990128362304422623774687016343941791656689448388985908175313614829909908356893342800628060160465683615166220573175938769461081487098435590436844166903497829258693611881307987318636607689526020683150600294123862365157118997921035791341140871725689496018862468197997466125156359921487468182301265312377713286900049417822852975349631975157597868980936691788128994631994667151664699433820078051295485205929580017193201657127927356092393628253296132908867714020893998470098334204370867131101707739961805167676194582115269918465262812886319316382631189471419022938452428879849565322221890854957082476046305074366276354837553728046063684904295085477614406511709431115723334059298989013379094322118392848053458677845326629425819409900694568159287171471618205927489780988048996284229739746840734179142634750258919075898300614325352964211467216848703878246198167491660944330038830640497561588777993684135762816857678904361327883062841275676997098166469372501405900657573038272586259719699242593225465741203438939754663317462389546896910831131762282937666985471247201189565762457502695715943007721190132371737607286735367333641672149240365397826040554946565526313563404881024794147110939345605684390608639591485168068651813498181142309632619479153903080808241229186628629112336049531270160605303131647021193646684571054775477263709122697517515103516610512716177557341536260613127573053952829490162980302098889894547045934169537153723740815291839052663486499199184014561259496075401862887443047984331416096025044662304767,3200000000)'); a = G.1; b = G.3; c = G.4; d = G.5; e = G.7; f = G.8; g = G.10; h = G.12; i = G.14; j = G.16; k = G.17; l = G.18; m = G.19; n = G.20; o = G.21;
 
Permutation group:Degree $40$ $\langle(1,9,3,10)(2,7)(4,8,5,6)(11,40)(12,38)(13,36)(14,39)(15,37)(16,33)(17,32) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 40 | (1,9,3,10)(2,7)(4,8,5,6)(11,40)(12,38)(13,36)(14,39)(15,37)(16,33)(17,32)(18,31)(19,35)(20,34)(21,26,24,28)(22,30,23,29)(25,27), (1,22,37,17,3,24,36,19,5,21,40,16,2,23,39,18,4,25,38,20)(6,26,12,31,10,28,15,35,9,30,13,34,8,27,11,33,7,29,14,32), (1,5)(2,4)(6,9,7,10,8)(11,12,13,14,15)(16,22,20,21,19,25,18,24,17,23)(26,31,30,35,29,34,28,33,27,32)(37,40)(38,39) >;
 
Copy content gap:G := Group( (1,9,3,10)(2,7)(4,8,5,6)(11,40)(12,38)(13,36)(14,39)(15,37)(16,33)(17,32)(18,31)(19,35)(20,34)(21,26,24,28)(22,30,23,29)(25,27), (1,22,37,17,3,24,36,19,5,21,40,16,2,23,39,18,4,25,38,20)(6,26,12,31,10,28,15,35,9,30,13,34,8,27,11,33,7,29,14,32), (1,5)(2,4)(6,9,7,10,8)(11,12,13,14,15)(16,22,20,21,19,25,18,24,17,23)(26,31,30,35,29,34,28,33,27,32)(37,40)(38,39) );
 
Copy content sage:G = PermutationGroup(['(1,9,3,10)(2,7)(4,8,5,6)(11,40)(12,38)(13,36)(14,39)(15,37)(16,33)(17,32)(18,31)(19,35)(20,34)(21,26,24,28)(22,30,23,29)(25,27)', '(1,22,37,17,3,24,36,19,5,21,40,16,2,23,39,18,4,25,38,20)(6,26,12,31,10,28,15,35,9,30,13,34,8,27,11,33,7,29,14,32)', '(1,5)(2,4)(6,9,7,10,8)(11,12,13,14,15)(16,22,20,21,19,25,18,24,17,23)(26,31,30,35,29,34,28,33,27,32)(37,40)(38,39)'])
 
Transitive group: 40T258690 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_5^8.C_2^4.C_2^5)$ . $Q_{16}$ (2) $(C_5^8.C_4^3)$ . $(C_4^2:D_4)$ (2) $(C_5^8.C_2^4.C_2^5)$ . $\SD_{16}$ (2) $(C_5^8.C_4^3.C_2^3.D_4)$ . $C_2$ all 82

Elements of the group are displayed as permutations of degree 40.

Homology

Abelianization: $C_{2}^{2} \times C_{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 169 normal subgroups (167 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_4^3.C_2^3.C_2^3.C_2$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5^8$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 7 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $872 \times 872$ character table is not available for this group.

Rational character table

The $721 \times 721$ rational character table is not available for this group.