| Presentation: |
${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o \mid f^{4}=g^{4}=h^{10}= \!\cdots\! \rangle}$
|
magma:G := PCGroup([21, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 5, 5, 5, 5, 5, 5, 5, 42, 2645938198, 4286, 58590709781, 49191819308, 2019, 134190642792, 64429107669, 9464850, 322101123124, 43017274465, 10871619826, 23020694617, 298, 274264804805, 68329112570, 80510985119, 8399721020, 1009612910, 2604783558, 159180523515, 45569644896, 21968069325, 19860679110, 11737802229, 4243610244, 519394993159, 52050722332, 131181469489, 22556091334, 5914461595, 2527365904, 2325131893, 490, 294647189768, 24200152733, 54434528114, 63506328551, 1512486956, 1512969305, 7938037178, 312566177289, 299938813470, 71778457011, 7988023752, 24430163613, 14810077074, 6603762615, 618, 537554992138, 123760412191, 69487934260, 53336443849, 14662194718, 19655631187, 10127827384, 418689847307, 45809971232, 75809986613, 66087608906, 2822432351, 2782096244, 11048204297, 12254, 18323, 3224, 4757, 746, 1397760012, 11182113, 2795574, 4368000075, 174858, 26367, 17652, 6753, 4590, 387504606733, 413969461282, 37640429623, 94087084300, 2353129057, 2353693558, 1176526987, 1176329440, 147211861, 147082522, 36803143, 18378184, 874, 35481600014, 1935395, 322616, 95760000077, 2419298, 1612919, 20300, 201761, 201782, 50603, 50624, 817152000015, 276599930916, 68812857, 860160078, 12355983501, 403404, 269025, 4081201168, 5688969253, 210118250554, 120806149711, 26133542500, 5817100921, 23350798, 7799964643, 2143485304, 2033186605, 1428226, 286671247, 26793139, 30965777, 18385920038, 38707280, 483840101, 665280143, 60480164, 7560206, 7560227, 3780248, 68640786, 41680880721, 2170560102, 1532160123, 574560144, 319200165, 71820207, 39900228, 19950249, 344064019, 295680000040, 147840000061, 860242, 15960000145, 1260000166, 840000187, 210000208, 210000229, 105000250, 10500292, 1395069419540, 564480000041, 282240000062, 5193299, 45864000104, 42336000125, 5292000167, 4410000188, 1984500209, 1102500230, 551250251, 55125293]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o := Explode([G.1, G.3, G.4, G.5, G.7, G.8, G.10, G.12, G.14, G.16, G.17, G.18, G.19, G.20, G.21]); AssignNames(~G, ["a", "a2", "b", "c", "d", "d2", "e", "f", "f2", "g", "g2", "h", "h2", "i", "i2", "j", "k", "l", "m", "n", "o"]);
gap:G := PcGroupCode(48576540869655393413815576343768717563065988755250233745478695310540365959507741320186833690920041206322990128362304422623774687016343941791656689448388985908175313614829909908356893342800628060160465683615166220573175938769461081487098435590436844166903497829258693611881307987318636607689526020683150600294123862365157118997921035791341140871725689496018862468197997466125156359921487468182301265312377713286900049417822852975349631975157597868980936691788128994631994667151664699433820078051295485205929580017193201657127927356092393628253296132908867714020893998470098334204370867131101707739961805167676194582115269918465262812886319316382631189471419022938452428879849565322221890854957082476046305074366276354837553728046063684904295085477614406511709431115723334059298989013379094322118392848053458677845326629425819409900694568159287171471618205927489780988048996284229739746840734179142634750258919075898300614325352964211467216848703878246198167491660944330038830640497561588777993684135762816857678904361327883062841275676997098166469372501405900657573038272586259719699242593225465741203438939754663317462389546896910831131762282937666985471247201189565762457502695715943007721190132371737607286735367333641672149240365397826040554946565526313563404881024794147110939345605684390608639591485168068651813498181142309632619479153903080808241229186628629112336049531270160605303131647021193646684571054775477263709122697517515103516610512716177557341536260613127573053952829490162980302098889894547045934169537153723740815291839052663486499199184014561259496075401862887443047984331416096025044662304767,3200000000); a := G.1; b := G.3; c := G.4; d := G.5; e := G.7; f := G.8; g := G.10; h := G.12; i := G.14; j := G.16; k := G.17; l := G.18; m := G.19; n := G.20; o := G.21;
sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(48576540869655393413815576343768717563065988755250233745478695310540365959507741320186833690920041206322990128362304422623774687016343941791656689448388985908175313614829909908356893342800628060160465683615166220573175938769461081487098435590436844166903497829258693611881307987318636607689526020683150600294123862365157118997921035791341140871725689496018862468197997466125156359921487468182301265312377713286900049417822852975349631975157597868980936691788128994631994667151664699433820078051295485205929580017193201657127927356092393628253296132908867714020893998470098334204370867131101707739961805167676194582115269918465262812886319316382631189471419022938452428879849565322221890854957082476046305074366276354837553728046063684904295085477614406511709431115723334059298989013379094322118392848053458677845326629425819409900694568159287171471618205927489780988048996284229739746840734179142634750258919075898300614325352964211467216848703878246198167491660944330038830640497561588777993684135762816857678904361327883062841275676997098166469372501405900657573038272586259719699242593225465741203438939754663317462389546896910831131762282937666985471247201189565762457502695715943007721190132371737607286735367333641672149240365397826040554946565526313563404881024794147110939345605684390608639591485168068651813498181142309632619479153903080808241229186628629112336049531270160605303131647021193646684571054775477263709122697517515103516610512716177557341536260613127573053952829490162980302098889894547045934169537153723740815291839052663486499199184014561259496075401862887443047984331416096025044662304767,3200000000)'); a = G.1; b = G.3; c = G.4; d = G.5; e = G.7; f = G.8; g = G.10; h = G.12; i = G.14; j = G.16; k = G.17; l = G.18; m = G.19; n = G.20; o = G.21;
sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(48576540869655393413815576343768717563065988755250233745478695310540365959507741320186833690920041206322990128362304422623774687016343941791656689448388985908175313614829909908356893342800628060160465683615166220573175938769461081487098435590436844166903497829258693611881307987318636607689526020683150600294123862365157118997921035791341140871725689496018862468197997466125156359921487468182301265312377713286900049417822852975349631975157597868980936691788128994631994667151664699433820078051295485205929580017193201657127927356092393628253296132908867714020893998470098334204370867131101707739961805167676194582115269918465262812886319316382631189471419022938452428879849565322221890854957082476046305074366276354837553728046063684904295085477614406511709431115723334059298989013379094322118392848053458677845326629425819409900694568159287171471618205927489780988048996284229739746840734179142634750258919075898300614325352964211467216848703878246198167491660944330038830640497561588777993684135762816857678904361327883062841275676997098166469372501405900657573038272586259719699242593225465741203438939754663317462389546896910831131762282937666985471247201189565762457502695715943007721190132371737607286735367333641672149240365397826040554946565526313563404881024794147110939345605684390608639591485168068651813498181142309632619479153903080808241229186628629112336049531270160605303131647021193646684571054775477263709122697517515103516610512716177557341536260613127573053952829490162980302098889894547045934169537153723740815291839052663486499199184014561259496075401862887443047984331416096025044662304767,3200000000)'); a = G.1; b = G.3; c = G.4; d = G.5; e = G.7; f = G.8; g = G.10; h = G.12; i = G.14; j = G.16; k = G.17; l = G.18; m = G.19; n = G.20; o = G.21;
|
| Permutation group: | Degree $40$
$\langle(1,9,3,10)(2,7)(4,8,5,6)(11,40)(12,38)(13,36)(14,39)(15,37)(16,33)(17,32) \!\cdots\! \rangle$
|
magma:G := PermutationGroup< 40 | (1,9,3,10)(2,7)(4,8,5,6)(11,40)(12,38)(13,36)(14,39)(15,37)(16,33)(17,32)(18,31)(19,35)(20,34)(21,26,24,28)(22,30,23,29)(25,27), (1,22,37,17,3,24,36,19,5,21,40,16,2,23,39,18,4,25,38,20)(6,26,12,31,10,28,15,35,9,30,13,34,8,27,11,33,7,29,14,32), (1,5)(2,4)(6,9,7,10,8)(11,12,13,14,15)(16,22,20,21,19,25,18,24,17,23)(26,31,30,35,29,34,28,33,27,32)(37,40)(38,39) >;
gap:G := Group( (1,9,3,10)(2,7)(4,8,5,6)(11,40)(12,38)(13,36)(14,39)(15,37)(16,33)(17,32)(18,31)(19,35)(20,34)(21,26,24,28)(22,30,23,29)(25,27), (1,22,37,17,3,24,36,19,5,21,40,16,2,23,39,18,4,25,38,20)(6,26,12,31,10,28,15,35,9,30,13,34,8,27,11,33,7,29,14,32), (1,5)(2,4)(6,9,7,10,8)(11,12,13,14,15)(16,22,20,21,19,25,18,24,17,23)(26,31,30,35,29,34,28,33,27,32)(37,40)(38,39) );
sage:G = PermutationGroup(['(1,9,3,10)(2,7)(4,8,5,6)(11,40)(12,38)(13,36)(14,39)(15,37)(16,33)(17,32)(18,31)(19,35)(20,34)(21,26,24,28)(22,30,23,29)(25,27)', '(1,22,37,17,3,24,36,19,5,21,40,16,2,23,39,18,4,25,38,20)(6,26,12,31,10,28,15,35,9,30,13,34,8,27,11,33,7,29,14,32)', '(1,5)(2,4)(6,9,7,10,8)(11,12,13,14,15)(16,22,20,21,19,25,18,24,17,23)(26,31,30,35,29,34,28,33,27,32)(37,40)(38,39)'])
|
| Transitive group: |
40T258690 |
|
|
|
more information |
| Direct product: |
not computed |
| Semidirect product: |
not computed |
| Trans. wreath product: |
not isomorphic to a non-trivial transitive wreath product |
| Possibly split product: |
$(C_5^8.C_2^4.C_2^5)$ . $Q_{16}$ (2) |
$(C_5^8.C_4^3)$ . $(C_4^2:D_4)$ (2) |
$(C_5^8.C_2^4.C_2^5)$ . $\SD_{16}$ (2) |
$(C_5^8.C_4^3.C_2^3.D_4)$ . $C_2$ |
all 82 |
Elements of the group are displayed as permutations of degree 40.
The $872 \times 872$ character table is not available for this group.
The $721 \times 721$ rational character table is not available for this group.