Properties

Label 3161088.a
Order \( 2^{10} \cdot 3^{2} \cdot 7^{3} \)
Exponent \( 2^{2} \cdot 3 \cdot 7 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2 \cdot 3 \)
$\card{Z(G)}$ \( 1 \)
$\card{\Aut(G)}$ \( 2^{10} \cdot 3^{2} \cdot 7^{3} \)
$\card{\mathrm{Out}(G)}$ \( 1 \)
Perm deg. $24$
Trans deg. $24$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 24 | (1,10,21,5,15,23,2,9,17,8,14,18,3,13,22,6,12,19,7,16,20)(4,11,24), (1,7,8,2,4,3)(5,6)(9,18,14,17,15,21)(10,19,12,20,11,23)(13,24)(16,22) >;
 
Copy content gap:G := Group( (1,10,21,5,15,23,2,9,17,8,14,18,3,13,22,6,12,19,7,16,20)(4,11,24), (1,7,8,2,4,3)(5,6)(9,18,14,17,15,21)(10,19,12,20,11,23)(13,24)(16,22) );
 
Copy content sage:G = PermutationGroup(['(1,10,21,5,15,23,2,9,17,8,14,18,3,13,22,6,12,19,7,16,20)(4,11,24)', '(1,7,8,2,4,3)(5,6)(9,18,14,17,15,21)(10,19,12,20,11,23)(13,24)(16,22)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(6802474633119688586149944881518470998100966845055207011711750910402732002571934324730055467125171747373636010387544771262044224776744457088924111196923629886066557273021221730065119445647055624942524676652680958799791298415076046128920075920663180130960082315191711196263980064136947837659619640011749231469327691947586933209926142336130704083791995061927998672012215282115993114162624127120487967183072163866854089543804052817945550250748517286650444260520293802090735713450658029439465040600838344174045511112919368176694443867016903440040192,3161088)'); a = G.1; b = G.3; c = G.5; d = G.6; e = G.8; f = G.9; g = G.10; h = G.11; i = G.12; j = G.13; k = G.14; l = G.15;
 

Group information

Description:$C_2^9.C_7^3:(C_3\times S_3)$
Order: \(3161088\)\(\medspace = 2^{10} \cdot 3^{2} \cdot 7^{3} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_2^9.C_7^3:(C_3\times S_3)$, of order \(3161088\)\(\medspace = 2^{10} \cdot 3^{2} \cdot 7^{3} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 10, $C_3$ x 2, $C_7$ x 3
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 7 12 14 21 28
Elements 1 1855 62720 9408 965888 117648 526848 517104 903168 56448 3161088
Conjugacy classes   1 5 5 2 13 29 4 29 6 2 96
Divisions 1 5 3 2 7 15 2 15 2 1 53
Autjugacy classes 1 5 5 2 13 29 4 29 6 2 96

Copy content comment:Compute statistics about the characters of G
 
Copy content magma:// Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content gap:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content sage:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i character_degrees = [c[0] for c in G.character_table()] [[n, character_degrees.count(n)] for n in set(character_degrees)]
 
Copy content sage_gap:G.CharacterDegrees()
 

Dimension 1 2 3 4 6 9 12 18 21 24 36 42 63 126 147 252 294 343 441 686 882 1372
Irr. complex chars.   6 3 4 0 8 28 0 11 6 0 0 0 4 7 6 0 0 6 4 3 0 0 96
Irr. rational chars. 2 3 0 1 2 0 2 15 2 1 5 2 0 3 2 3 2 2 0 3 2 1 53

Minimal presentations

Permutation degree:$24$
Transitive degree:$24$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 21 21 21
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l \mid a^{6}=b^{21}=c^{7}=d^{14}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([15, 2, 3, 3, 7, 7, 2, 7, 2, 2, 2, 2, 2, 2, 2, 2, 30, 76944872, 68677217, 167, 169295403, 93166758, 132800854, 95629294, 8078209, 154924, 161379545, 73148690, 24001145, 11951150, 2121905, 260, 16114146, 8612751, 41416551, 5844771, 1123146, 154103047, 6667942, 22720357, 247012, 35347, 15202, 1777, 6667928, 8334923, 28894358, 833543, 119138, 15203, 10493, 18522009, 81496824, 154389, 10701654, 1587669, 218484, 92499, 187442650, 1018735, 1358320, 226435, 32410, 25495, 11650, 413411051, 218930066, 12965441, 3889676, 1261331, 75686, 147521, 443046252, 232358517, 60196542, 3678732, 2207277, 71067, 39687, 614559973, 316355788, 47107663, 9435988, 1348063, 214708, 110353, 441749714, 43063679, 104417819, 17210084, 2017649, 655289, 212729]); a,b,c,d,e,f,g,h,i,j,k,l := Explode([G.1, G.3, G.5, G.6, G.8, G.9, G.10, G.11, G.12, G.13, G.14, G.15]); AssignNames(~G, ["a", "a2", "b", "b3", "c", "d", "d2", "e", "f", "g", "h", "i", "j", "k", "l"]);
 
Copy content gap:G := PcGroupCode(6802474633119688586149944881518470998100966845055207011711750910402732002571934324730055467125171747373636010387544771262044224776744457088924111196923629886066557273021221730065119445647055624942524676652680958799791298415076046128920075920663180130960082315191711196263980064136947837659619640011749231469327691947586933209926142336130704083791995061927998672012215282115993114162624127120487967183072163866854089543804052817945550250748517286650444260520293802090735713450658029439465040600838344174045511112919368176694443867016903440040192,3161088); a := G.1; b := G.3; c := G.5; d := G.6; e := G.8; f := G.9; g := G.10; h := G.11; i := G.12; j := G.13; k := G.14; l := G.15;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(6802474633119688586149944881518470998100966845055207011711750910402732002571934324730055467125171747373636010387544771262044224776744457088924111196923629886066557273021221730065119445647055624942524676652680958799791298415076046128920075920663180130960082315191711196263980064136947837659619640011749231469327691947586933209926142336130704083791995061927998672012215282115993114162624127120487967183072163866854089543804052817945550250748517286650444260520293802090735713450658029439465040600838344174045511112919368176694443867016903440040192,3161088)'); a = G.1; b = G.3; c = G.5; d = G.6; e = G.8; f = G.9; g = G.10; h = G.11; i = G.12; j = G.13; k = G.14; l = G.15;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(6802474633119688586149944881518470998100966845055207011711750910402732002571934324730055467125171747373636010387544771262044224776744457088924111196923629886066557273021221730065119445647055624942524676652680958799791298415076046128920075920663180130960082315191711196263980064136947837659619640011749231469327691947586933209926142336130704083791995061927998672012215282115993114162624127120487967183072163866854089543804052817945550250748517286650444260520293802090735713450658029439465040600838344174045511112919368176694443867016903440040192,3161088)'); a = G.1; b = G.3; c = G.5; d = G.6; e = G.8; f = G.9; g = G.10; h = G.11; i = G.12; j = G.13; k = G.14; l = G.15;
 
Permutation group:Degree $24$ $\langle(1,10,21,5,15,23,2,9,17,8,14,18,3,13,22,6,12,19,7,16,20)(4,11,24), (1,7,8,2,4,3)(5,6)(9,18,14,17,15,21)(10,19,12,20,11,23)(13,24)(16,22)\rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 24 | (1,10,21,5,15,23,2,9,17,8,14,18,3,13,22,6,12,19,7,16,20)(4,11,24), (1,7,8,2,4,3)(5,6)(9,18,14,17,15,21)(10,19,12,20,11,23)(13,24)(16,22) >;
 
Copy content gap:G := Group( (1,10,21,5,15,23,2,9,17,8,14,18,3,13,22,6,12,19,7,16,20)(4,11,24), (1,7,8,2,4,3)(5,6)(9,18,14,17,15,21)(10,19,12,20,11,23)(13,24)(16,22) );
 
Copy content sage:G = PermutationGroup(['(1,10,21,5,15,23,2,9,17,8,14,18,3,13,22,6,12,19,7,16,20)(4,11,24)', '(1,7,8,2,4,3)(5,6)(9,18,14,17,15,21)(10,19,12,20,11,23)(13,24)(16,22)'])
 
Transitive group: 24T22827 42T2254 42T2255 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_2^9.C_7\wr S_3)$ . $C_3$ $(C_2^9.C_7^3.C_3)$ . $S_3$ $(C_2^9.C_7\wr C_3)$ . $C_6$ $C_2^9$ . $(C_7^3:(C_3\times S_3))$ all 10
Aut. group: $\Aut(C_2^9:(C_7^2:C_3))$ $\Aut(C_2^9.C_7^2:S_3)$ $\Aut(C_2^9.C_7^2:C_6)$ $\Aut(C_2^9.C_7\wr C_3)$ all 6

Elements of the group are displayed as permutations of degree 24.

Homology

Abelianization: $C_{6} \simeq C_{2} \times C_{3}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_1$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 12 normal subgroups, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_1$ $G/Z \simeq$ $C_2^9.C_7^3:(C_3\times S_3)$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_2^9.C_7\wr C_3$ $G/G' \simeq$ $C_6$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_1$ $G/\Phi \simeq$ $C_2^9.C_7^3:(C_3\times S_3)$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_2^9$ $G/\operatorname{Fit} \simeq$ $C_7^3:(C_3\times S_3)$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_2^9.C_7^3:(C_3\times S_3)$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_2^9$ $G/\operatorname{soc} \simeq$ $C_7^3:(C_3\times S_3)$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^3\times C_2^6.C_2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^2$
7-Sylow subgroup: $P_{ 7 } \simeq$ $C_7^3$

Subgroup diagram and profile

Series

Derived series $C_2^9.C_7^3:(C_3\times S_3)$ $\rhd$ $C_2^9.C_7\wr C_3$ $\rhd$ $C_2^9.C_7^2$ $\rhd$ $C_2^9$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_2^9.C_7^3:(C_3\times S_3)$ $\rhd$ $C_2^9.C_7^3:C_3^2$ $\rhd$ $C_2^9.C_7\wr C_3$ $\rhd$ $C_2^6.C_7^2\times F_8$ $\rhd$ $C_2^9.C_7^2$ $\rhd$ $C_2^9$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_2^9.C_7^3:(C_3\times S_3)$ $\rhd$ $C_2^9.C_7\wr C_3$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 6 larger groups in the database.

This group is a maximal quotient of 3 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

See the $96 \times 96$ character table. Alternatively, you may search for characters of this group with desired properties.

Rational character table

See the $53 \times 53$ rational character table.