Properties

Label 314928.nj
Order \( 2^{4} \cdot 3^{9} \)
Exponent \( 2^{2} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \)
$\card{Z(G)}$ \( 1 \)
$\card{\Aut(G)}$ \( 2^{5} \cdot 3^{11} \)
$\card{\mathrm{Out}(G)}$ \( 2 \cdot 3^{2} \)
Perm deg. $36$
Trans deg. $36$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,34)(2,35)(3,36)(4,9,5,7,6,8)(10,15,11,14,12,13)(16,21)(17,20)(18,19)(22,27,23,26,24,25)(28,32,29,33,30,31), (1,27,14,3,25,13,2,26,15)(4,12,17,23,28,36,6,11,16,24,29,34,5,10,18,22,30,35)(7,33,19,8,32,21,9,31,20), (1,34,32,5,25,12,20,18,13,23,7,29,3,35,31,4,26,11,19,17,15,24,8,30,2,36,33,6,27,10,21,16,14,22,9,28) >;
 
Copy content gap:G := Group( (1,34)(2,35)(3,36)(4,9,5,7,6,8)(10,15,11,14,12,13)(16,21)(17,20)(18,19)(22,27,23,26,24,25)(28,32,29,33,30,31), (1,27,14,3,25,13,2,26,15)(4,12,17,23,28,36,6,11,16,24,29,34,5,10,18,22,30,35)(7,33,19,8,32,21,9,31,20), (1,34,32,5,25,12,20,18,13,23,7,29,3,35,31,4,26,11,19,17,15,24,8,30,2,36,33,6,27,10,21,16,14,22,9,28) );
 
Copy content sage:G = PermutationGroup(['(1,34)(2,35)(3,36)(4,9,5,7,6,8)(10,15,11,14,12,13)(16,21)(17,20)(18,19)(22,27,23,26,24,25)(28,32,29,33,30,31)', '(1,27,14,3,25,13,2,26,15)(4,12,17,23,28,36,6,11,16,24,29,34,5,10,18,22,30,35)(7,33,19,8,32,21,9,31,20)', '(1,34,32,5,25,12,20,18,13,23,7,29,3,35,31,4,26,11,19,17,15,24,8,30,2,36,33,6,27,10,21,16,14,22,9,28)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(2210300492751322561310532830707945424868612236790188876961293028316841927375662471413672245254658849451686701159183162097983061431007851541812681146245962358178236776532168740488018561318430275862022624786781822107250361825833398149991032936096003760719440492840214106507109611481390907145179085602154873500444517983679,314928)'); a = G.1; b = G.2; c = G.4; d = G.7; e = G.9; f = G.10; g = G.11; h = G.12; i = G.13;
 

Group information

Description:$C_3^4.C_{18}^2:D_6$
Order: \(314928\)\(\medspace = 2^{4} \cdot 3^{9} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_3^6.C_3^3.C_6^2.C_2^3$, of order \(5668704\)\(\medspace = 2^{5} \cdot 3^{11} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 4, $C_3$ x 9
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 9 12 18 36
Elements 1 3987 2186 8748 107550 17496 17496 104976 52488 314928
Conjugacy classes   1 7 43 2 59 64 2 74 6 258
Divisions 1 7 37 2 49 40 2 42 2 182
Autjugacy classes 1 6 36 1 50 25 1 28 1 149

Copy content comment:Compute statistics about the characters of G
 
Copy content magma:// Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content gap:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content sage:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i character_degrees = [c[0] for c in G.character_table()] [[n, character_degrees.count(n)] for n in set(character_degrees)]
 
Copy content sage_gap:G.CharacterDegrees()
 

Dimension 1 2 4 6 8 12 16 18 24 32 36 48 72 96 144 288
Irr. complex chars.   8 18 38 24 30 30 5 0 66 0 4 15 12 0 8 0 258
Irr. rational chars. 8 14 20 0 24 16 11 8 26 1 6 17 20 4 6 1 182

Minimal presentations

Permutation degree:$36$
Transitive degree:$36$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 24 24 24
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i \mid c^{18}=d^{6}=e^{3}=f^{3}=g^{3}=h^{3}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([13, 2, 2, 3, 2, 3, 3, 2, 3, 3, 3, 3, 3, 3, 2199444, 6034341, 66, 2352014, 441235, 3971139, 770032, 866921, 146, 4494364, 6474017, 3918750, 251, 5634, 5002458, 10032769, 6031148, 2101599, 559435, 266, 6694279, 14586644, 5631009, 322030, 1239323, 1718504, 13402605, 2127094, 1815419, 1050954, 14882409, 16314502, 5138675, 3383688, 835441, 4767, 38362906, 8437595, 8543142, 566329, 970460, 115060, 44343947, 14332056, 1370341, 1931954, 1620279, 11024220, 17935657, 6668102, 425931, 824446, 85266]); a,b,c,d,e,f,g,h,i := Explode([G.1, G.2, G.4, G.7, G.9, G.10, G.11, G.12, G.13]); AssignNames(~G, ["a", "b", "b2", "c", "c2", "c6", "d", "d2", "e", "f", "g", "h", "i"]);
 
Copy content gap:G := PcGroupCode(2210300492751322561310532830707945424868612236790188876961293028316841927375662471413672245254658849451686701159183162097983061431007851541812681146245962358178236776532168740488018561318430275862022624786781822107250361825833398149991032936096003760719440492840214106507109611481390907145179085602154873500444517983679,314928); a := G.1; b := G.2; c := G.4; d := G.7; e := G.9; f := G.10; g := G.11; h := G.12; i := G.13;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(2210300492751322561310532830707945424868612236790188876961293028316841927375662471413672245254658849451686701159183162097983061431007851541812681146245962358178236776532168740488018561318430275862022624786781822107250361825833398149991032936096003760719440492840214106507109611481390907145179085602154873500444517983679,314928)'); a = G.1; b = G.2; c = G.4; d = G.7; e = G.9; f = G.10; g = G.11; h = G.12; i = G.13;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(2210300492751322561310532830707945424868612236790188876961293028316841927375662471413672245254658849451686701159183162097983061431007851541812681146245962358178236776532168740488018561318430275862022624786781822107250361825833398149991032936096003760719440492840214106507109611481390907145179085602154873500444517983679,314928)'); a = G.1; b = G.2; c = G.4; d = G.7; e = G.9; f = G.10; g = G.11; h = G.12; i = G.13;
 
Permutation group:Degree $36$ $\langle(1,34)(2,35)(3,36)(4,9,5,7,6,8)(10,15,11,14,12,13)(16,21)(17,20)(18,19) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,34)(2,35)(3,36)(4,9,5,7,6,8)(10,15,11,14,12,13)(16,21)(17,20)(18,19)(22,27,23,26,24,25)(28,32,29,33,30,31), (1,27,14,3,25,13,2,26,15)(4,12,17,23,28,36,6,11,16,24,29,34,5,10,18,22,30,35)(7,33,19,8,32,21,9,31,20), (1,34,32,5,25,12,20,18,13,23,7,29,3,35,31,4,26,11,19,17,15,24,8,30,2,36,33,6,27,10,21,16,14,22,9,28) >;
 
Copy content gap:G := Group( (1,34)(2,35)(3,36)(4,9,5,7,6,8)(10,15,11,14,12,13)(16,21)(17,20)(18,19)(22,27,23,26,24,25)(28,32,29,33,30,31), (1,27,14,3,25,13,2,26,15)(4,12,17,23,28,36,6,11,16,24,29,34,5,10,18,22,30,35)(7,33,19,8,32,21,9,31,20), (1,34,32,5,25,12,20,18,13,23,7,29,3,35,31,4,26,11,19,17,15,24,8,30,2,36,33,6,27,10,21,16,14,22,9,28) );
 
Copy content sage:G = PermutationGroup(['(1,34)(2,35)(3,36)(4,9,5,7,6,8)(10,15,11,14,12,13)(16,21)(17,20)(18,19)(22,27,23,26,24,25)(28,32,29,33,30,31)', '(1,27,14,3,25,13,2,26,15)(4,12,17,23,28,36,6,11,16,24,29,34,5,10,18,22,30,35)(7,33,19,8,32,21,9,31,20)', '(1,34,32,5,25,12,20,18,13,23,7,29,3,35,31,4,26,11,19,17,15,24,8,30,2,36,33,6,27,10,21,16,14,22,9,28)'])
 
Transitive group: 36T27684 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_3^7$ . $(D_6:D_6)$ $(C_3^6.D_{18})$ . $D_6$ $(C_3^6.S_3^3)$ . $C_2$ $(C_3^6.C_6^2)$ . $D_6$ (4) all 45

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2}^{3} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{3}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 78 normal subgroups (38 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_1$ $G/Z \simeq$ $C_3^4.C_{18}^2:D_6$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_3^7.C_3.C_6$ $G/G' \simeq$ $C_2^3$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_3^4$ $G/\Phi \simeq$ $(C_3\times S_3^2):S_3^2$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_3^7.C_3^2$ $G/\operatorname{Fit} \simeq$ $C_2\times D_4$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_3^4.C_{18}^2:D_6$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_3^4$ $G/\operatorname{soc} \simeq$ $(C_3\times S_3^2):S_3^2$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2\times D_4$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^7.C_3^2$

Subgroup diagram and profile

Series

Derived series $C_3^4.C_{18}^2:D_6$ $\rhd$ $C_3^7.C_3.C_6$ $\rhd$ $C_3^6$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_3^4.C_{18}^2:D_6$ $\rhd$ $C_3^5.C_3^4.C_2^3$ $\rhd$ $C_3^6.C_3^3.C_2^2$ $\rhd$ $C_3^7.C_3.C_6$ $\rhd$ $C_3^7.C_3^2$ $\rhd$ $C_3^7.C_3$ $\rhd$ $C_3^7$ $\rhd$ $C_3^6$ $\rhd$ $C_3^4$ $\rhd$ $C_3^3$ $\rhd$ $C_3^2$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_3^4.C_{18}^2:D_6$ $\rhd$ $C_3^7.C_3.C_6$ $\rhd$ $C_3^7.C_3^2$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 6 larger groups in the database.

This group is a maximal quotient of 1 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

See the $258 \times 258$ character table (warning: may be slow to load). Alternatively, you may search for characters of this group with desired properties.

Rational character table

See the $182 \times 182$ rational character table (warning: may be slow to load).