Properties

Label 304...000.a
Order \( 2^{25} \cdot 3^{13} \cdot 5^{6} \cdot 7^{4} \cdot 11^{2} \cdot 13^{2} \cdot 17 \cdot 19 \cdot 23 \)
Exponent \( 2^{4} \cdot 3^{3} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \)
Nilpotent no
Solvable no
$\card{G^{\mathrm{ab}}}$ \( 2 \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{25} \cdot 3^{13} \cdot 5^{6} \cdot 7^{4} \cdot 11^{2} \cdot 13^{2} \cdot 17 \cdot 19 \cdot 23 \)
$\card{\mathrm{Out}(G)}$ \( 1 \)
Perm deg. $28$
Trans deg. $28$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content magma:G := SymmetricGroup(28);
 
Copy content gap:G := SymmetricGroup(28);
 
Copy content sage:G = SymmetricGroup(28)
 
Copy content comment:Define the group as a permutation group
 

Group information

Description:$S_{28}$
Order: \(304\!\cdots\!000\)\(\medspace = 2^{25} \cdot 3^{13} \cdot 5^{6} \cdot 7^{4} \cdot 11^{2} \cdot 13^{2} \cdot 17 \cdot 19 \cdot 23 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(80313433200\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(304\!\cdots\!000\)\(\medspace = 2^{25} \cdot 3^{13} \cdot 5^{6} \cdot 7^{4} \cdot 11^{2} \cdot 13^{2} \cdot 17 \cdot 19 \cdot 23 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$, $A_{28}$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$1$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian, almost simple, nonsolvable, and rational.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 30 33 34 35 36 38 39 40 42 44 45 46 48 50 51 52 55 56 57 60 63 65 66 68 69 70 72 75 76 77 78 80 84 85 88 90 91 92 95 99 102 104 105 110 112 114 115 117 119 120 126 130 132 133 136 138 140 143 144 152 153 154 156 165 168 170 171 176 180 182 187 190 195 198 204 210 220 228 231 234 238 240 252 255 260 264 266 273 280 285 286 306 308 312 315 330 336 340 357 360 364 380 385 390 396 408 420 429 440 455 462 468 476 495 504 510 520 546 560 572 585 616 630 660 693 728 770 780 792 840 910 924 990 1092 1155 1260 1320 1365 1540 2310
Elements 1 17411277367391103 96357939154884468152 110151147765102551452800 136010110548770728530624 21718504084237946705046600 5320390302735944670748800 120508437382644361597747200 85920144282136169957952000 272190814858297825856638272 1749818323147908633984000 2515328971211736971760268800 451018261277866600851456000 1150680516032629014569136000 344747955105648053798686848 1981546115513280599162880000 449299756157091840000 5286886473200573069180352000 44220554948092723200000 4770473802839637972426547200 3096452174187759786374976000 1594100996884892489745024000 110466791525983282790400000 15490398926557104522964992000 2032588964078092403343360000 12177678671423015955240960000 11292160911544957796352000000 11598114337612546133085696000 6102334934379484687565078400 140583822036434887219200000 16037754796027393228800000 20393469642765307139251200 5447923066668161928296448000 115813633409054842060800000 3019675498134619484160000 3242977528776001774210252800 7196724118623588309528768000 3806644138161062767994880000 980233560546181063170048000 2761669788149582069760000000 5711055191176209806131200000 6097766892234277210030080000 63805058371868612198400000 79697067239302585712640000 270561920166876355670016000 1326332738638082988933120000 255064160940598827417600000 16716042642336549116135731200 202770440177903057940480000 35180716979111620460544000 6916788038892221319997440000 580028013208559281766400000 2209335830519665655808000000 2322404775961063254324864000 3676353020578325214167040000 4065177928156184806686720000 1370660321171082048307200000 47139054145374702551040000 693193283918051463106560000 3097278421452331281285120000 9150151815923030006814720000 363674005827697905500160000 537492805293167397273600000 6891517622499245571483648000 239398907865195914035200000 3314003745779498483712000000 133722958163032394956800000 94177721888088020582400000 2020065182674969625395200000 623550643741905636556800000 2399934006835791987585024000 3499148814845175458942976000 1270368102548807752089600000 3677381349483390861312000000 2651202996623598786969600000 293161869818955635097600000 106753622062925021184000000 5483051579966682941227008000 4447077537896097201377280000 1087200100949622971351040000 2503243338578989275709440000 1146196784254563385344000000 1494550708880950296576000000 2209335830519665655808000000 3767621600893708095842304000 88836930248168374272000000 2117280170914679586816000000 2005844372445485924352000000 996367139253966864384000000 1471637384102130377932800000 2920696221117377448345600000 971387570477486415052800000 2669413387366999338024960000 2167098527877377930035200000 1782972775507098599424000000 1732320139839283298304000000 3362812240982440541847552000 1738612755731861891481600000 1630418955142854868992000000 1203506623467291554611200000 1681828800964901040291840000 870972070308084102758400000 1805915439897814941696000000 6082781730162941546975232000 667218225288892210053120000 1337229581630323949568000000 128145425310358673817600000 1140073938184827469824000000 960782598566325190656000000 1693824136731743669452800000 1599842823022775749017600000 398546855701586745753600000 973948878620752609935360000 1137770758511726808268800000 1146196784254563385344000000 102373986285984507494400000 1293917443225307759738880000 1069783665304259159654400000 799532372233515368448000000 996367139253966864384000000 228226304137556371046400000 1302941643639802822656000000 184937941459486298603520000 2580164055899424941506560000 907405787534862680064000000 896730425328570177945600000 854028976503400169472000000 1185676895712220568616960000 453702893767431340032000000 802337748978194369740800000 85791092639659744296960000 1615647638113355500093440000 673680054381943504896000000 747275354440475148288000000 2678151369024742460129280000 710695441985346994176000000 461952037290475546214400000 111680712311983099084800000 1297865247625621772697600000 651470821819901411328000000 640521732377550127104000000 307968024860317030809600000 604937191689908453376000000 1195640567104760237260800000 586323739637911270195200000 884138972469866201088000000 544443472520917608038400000 533021581489010245632000000 521176657455921129062400000 494948611382652370944000000 1342960565551596766494720000 1204924897265990383042560000 439954321229024329728000000 418802671169936621568000000 560941759567006020403200000 521176657455921129062400000 384960031075396288512000000 629134679357504791511040000 335042136935949297254400000 439954321229024329728000000 307968024860317030809600000 279201780779957747712000000 131986296368707298918400000 241974876675963381350400000 230976018645237773107200000 223361424623966198169600000 197979444553060948377600000 131986296368707298918400000 304888344611713860501504000000
Conjugacy classes   1 14 9 49 5 156 4 56 12 62 2 345 2 34 30 20 1 96 1 111 17 15 1 188 1 10 1 54 294 7 5 7 107 4 5 66 138 20 16 2 30 1 3 12 4 32 3 321 9 3 46 6 1 51 40 1 4 2 29 10 142 2 10 76 2 1 1 3 12 6 19 17 4 7 1 3 1 107 34 11 41 1 2 1 45 1 3 1 1 8 24 7 46 4 1 1 47 5 1 2 5 9 6 93 13 2 4 5 2 6 20 2 8 12 1 2 16 1 2 1 6 6 5 25 2 2 1 12 4 1 2 12 5 1 51 1 4 1 10 2 1 2 5 2 2 5 1 1 1 2 10 11 1 1 3 4 1 10 1 4 1 1 1 3 1 1 1 1 3718
Divisions 1 14 9 49 5 156 4 56 12 62 2 345 2 34 30 20 1 96 1 111 17 15 1 188 1 10 1 54 294 7 5 7 107 4 5 66 138 20 16 2 30 1 3 12 4 32 3 321 9 3 46 6 1 51 40 1 4 2 29 10 142 2 10 76 2 1 1 3 12 6 19 17 4 7 1 3 1 107 34 11 41 1 2 1 45 1 3 1 1 8 24 7 46 4 1 1 47 5 1 2 5 9 6 93 13 2 4 5 2 6 20 2 8 12 1 2 16 1 2 1 6 6 5 25 2 2 1 12 4 1 2 12 5 1 51 1 4 1 10 2 1 2 5 2 2 5 1 1 1 2 10 11 1 1 3 4 1 10 1 4 1 1 1 3 1 1 1 1 3718
Autjugacy classes 1 14 9 49 5 156 4 56 12 62 2 345 2 34 30 20 1 96 1 111 17 15 1 188 1 10 1 54 294 7 5 7 107 4 5 66 138 20 16 2 30 1 3 12 4 32 3 321 9 3 46 6 1 51 40 1 4 2 29 10 142 2 10 76 2 1 1 3 12 6 19 17 4 7 1 3 1 107 34 11 41 1 2 1 45 1 3 1 1 8 24 7 46 4 1 1 47 5 1 2 5 9 6 93 13 2 4 5 2 6 20 2 8 12 1 2 16 1 2 1 6 6 5 25 2 2 1 12 4 1 2 12 5 1 51 1 4 1 10 2 1 2 5 2 2 5 1 1 1 2 10 11 1 1 3 4 1 10 1 4 1 1 1 3 1 1 1 1 3718

Minimal presentations

Permutation degree:$28$
Transitive degree:$28$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Permutation group:Degree $28$ $\langle(1,2), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)\rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 28 | (1,2), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28) >;
 
Copy content gap:G := Group( (1,2), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28) );
 
Copy content sage:G = PermutationGroup(['(1,2)', '(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)'])
 
Transitive group: 28T1854 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $A_{28}$ . $C_2$ more information

Elements of the group are displayed as permutations of degree 28.

Homology

Abelianization: $C_{2} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 3 normal subgroups, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $A_{28}$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^5.C_2^5.C_2^4.C_2\times D_4\times D_4^2.C_2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^8.C_3^4.C_3$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5\wr C_5$
7-Sylow subgroup: $P_{ 7 } \simeq$ $C_7^4$
11-Sylow subgroup: $P_{ 11 } \simeq$ $C_{11}^2$
13-Sylow subgroup: $P_{ 13 } \simeq$ $C_{13}^2$
17-Sylow subgroup: $P_{ 17 } \simeq$ $C_{17}$
19-Sylow subgroup: $P_{ 19 } \simeq$ $C_{19}$
23-Sylow subgroup: $P_{ 23 } \simeq$ $C_{23}$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

Every character has rational values, so the complex character table is the same as the rational character table below.

Rational character table

The $3718 \times 3718$ rational character table is not available for this group.