Properties

Label 294912.sf
Order \( 2^{15} \cdot 3^{2} \)
Exponent \( 2^{3} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \)
$\card{Z(G)}$ \( 2^{2} \)
$\card{\Aut(G)}$ \( 2^{19} \cdot 3^{2} \)
$\card{\mathrm{Out}(G)}$ \( 2^{6} \)
Perm deg. $35$
Trans deg. not computed
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 35 | (1,2)(3,5)(4,6)(7,10)(8,11)(9,12)(13,16)(14,15)(18,19), (1,3)(2,5)(4,9)(6,12)(7,13)(8,15)(10,16)(11,14)(18,19)(21,24)(25,29)(28,33)(32,35), (3,7)(5,10)(8,9)(11,12)(18,19)(23,27)(24,28)(26,31)(29,32), (1,2)(3,5)(8,11)(14,15)(18,19)(21,25)(24,29)(27,31)(30,34), (1,2)(3,5)(4,6)(7,10)(13,16)(14,15)(18,19)(23,26)(27,31), (1,2)(4,6)(13,16)(14,15)(18,19)(23,26)(24,29)(27,31)(28,32), (1,2)(3,5)(7,10)(8,11)(13,16)(14,15)(18,19)(27,31)(30,34), (1,4,7,14,13,12,2,6,10,15,16,9)(3,8,5,11)(18,19)(20,21,26,32,27,33,22,25,23,28,31,35)(24,30,29,34), (1,2)(3,5)(4,6)(7,10)(8,11)(9,12)(13,16)(14,15)(18,19)(20,22)(23,26)(27,31)(30,34), (1,2)(3,5)(4,6)(7,10)(8,11)(9,12)(13,16)(14,15)(18,19)(20,23)(21,24)(22,26)(25,29)(27,34)(28,33)(30,31)(32,35), (17,18,19), (1,2)(3,5)(7,10)(13,16)(18,19)(20,22)(23,26)(27,31)(30,34), (1,5)(2,3)(8,14)(11,15)(18,19)(27,34)(28,33)(30,31)(32,35), (18,19)(20,22)(23,26)(27,31)(30,34), (1,2)(3,5)(4,6)(7,10)(8,11)(9,12)(13,16)(14,15)(18,19)(20,22)(21,25)(23,26)(24,29)(27,31)(28,32)(30,34)(33,35) >;
 
Copy content gap:G := Group( (1,2)(3,5)(4,6)(7,10)(8,11)(9,12)(13,16)(14,15)(18,19), (1,3)(2,5)(4,9)(6,12)(7,13)(8,15)(10,16)(11,14)(18,19)(21,24)(25,29)(28,33)(32,35), (3,7)(5,10)(8,9)(11,12)(18,19)(23,27)(24,28)(26,31)(29,32), (1,2)(3,5)(8,11)(14,15)(18,19)(21,25)(24,29)(27,31)(30,34), (1,2)(3,5)(4,6)(7,10)(13,16)(14,15)(18,19)(23,26)(27,31), (1,2)(4,6)(13,16)(14,15)(18,19)(23,26)(24,29)(27,31)(28,32), (1,2)(3,5)(7,10)(8,11)(13,16)(14,15)(18,19)(27,31)(30,34), (1,4,7,14,13,12,2,6,10,15,16,9)(3,8,5,11)(18,19)(20,21,26,32,27,33,22,25,23,28,31,35)(24,30,29,34), (1,2)(3,5)(4,6)(7,10)(8,11)(9,12)(13,16)(14,15)(18,19)(20,22)(23,26)(27,31)(30,34), (1,2)(3,5)(4,6)(7,10)(8,11)(9,12)(13,16)(14,15)(18,19)(20,23)(21,24)(22,26)(25,29)(27,34)(28,33)(30,31)(32,35), (17,18,19), (1,2)(3,5)(7,10)(13,16)(18,19)(20,22)(23,26)(27,31)(30,34), (1,5)(2,3)(8,14)(11,15)(18,19)(27,34)(28,33)(30,31)(32,35), (18,19)(20,22)(23,26)(27,31)(30,34), (1,2)(3,5)(4,6)(7,10)(8,11)(9,12)(13,16)(14,15)(18,19)(20,22)(21,25)(23,26)(24,29)(27,31)(28,32)(30,34)(33,35) );
 
Copy content sage:G = PermutationGroup(['(1,2)(3,5)(4,6)(7,10)(8,11)(9,12)(13,16)(14,15)(18,19)', '(1,3)(2,5)(4,9)(6,12)(7,13)(8,15)(10,16)(11,14)(18,19)(21,24)(25,29)(28,33)(32,35)', '(3,7)(5,10)(8,9)(11,12)(18,19)(23,27)(24,28)(26,31)(29,32)', '(1,2)(3,5)(8,11)(14,15)(18,19)(21,25)(24,29)(27,31)(30,34)', '(1,2)(3,5)(4,6)(7,10)(13,16)(14,15)(18,19)(23,26)(27,31)', '(1,2)(4,6)(13,16)(14,15)(18,19)(23,26)(24,29)(27,31)(28,32)', '(1,2)(3,5)(7,10)(8,11)(13,16)(14,15)(18,19)(27,31)(30,34)', '(1,4,7,14,13,12,2,6,10,15,16,9)(3,8,5,11)(18,19)(20,21,26,32,27,33,22,25,23,28,31,35)(24,30,29,34)', '(1,2)(3,5)(4,6)(7,10)(8,11)(9,12)(13,16)(14,15)(18,19)(20,22)(23,26)(27,31)(30,34)', '(1,2)(3,5)(4,6)(7,10)(8,11)(9,12)(13,16)(14,15)(18,19)(20,23)(21,24)(22,26)(25,29)(27,34)(28,33)(30,31)(32,35)', '(17,18,19)', '(1,2)(3,5)(7,10)(13,16)(18,19)(20,22)(23,26)(27,31)(30,34)', '(1,5)(2,3)(8,14)(11,15)(18,19)(27,34)(28,33)(30,31)(32,35)', '(18,19)(20,22)(23,26)(27,31)(30,34)', '(1,2)(3,5)(4,6)(7,10)(8,11)(9,12)(13,16)(14,15)(18,19)(20,22)(21,25)(23,26)(24,29)(27,31)(28,32)(30,34)(33,35)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(101423739071833290501474732415827227820307293731201978634366664295150444089424387132828460365904175141282694421904805611505094626932163737236187074328291664360387069168654981727059665753086881931241579503623226385401906853556290857542698561686996666263313024337808104634162578200448780255937051180290550288646030211998908946637671442347291710724677533247108752694459632367407071675926974250064511430834278400,294912)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.7; f = G.8; g = G.10; h = G.11; i = G.13; j = G.14; k = G.16; l = G.17;
 

Group information

Description:$S_3\times C_2^5.C_2^6:S_4$
Order: \(294912\)\(\medspace = 2^{15} \cdot 3^{2} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_2^6.C_2^4.C_6^2.C_2^6.C_2$, of order \(4718592\)\(\medspace = 2^{19} \cdot 3^{2} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 15, $C_3$ x 2
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 12 24
Elements 1 7807 1538 92544 63806 30720 83136 15360 294912
Conjugacy classes   1 95 3 136 78 12 77 6 408
Divisions 1 95 3 136 78 10 77 5 405
Autjugacy classes 1 39 3 62 39 6 38 3 191

Minimal presentations

Permutation degree:$35$
Transitive degree:not computed
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible none not computed none
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l \mid a^{2}=d^{2}=e^{2}=f^{4}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([17, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 341, 86, 3018794, 754632, 6734060, 291553, 190, 1642221, 4281488, 132672, 881302, 16563, 430904, 370639, 4973747, 3311572, 1268835, 231767, 3760152, 2536169, 300346, 7011, 1724, 925, 398, 2820121, 470075, 15667226, 3002940, 121457, 4174, 6911, 25332543, 323180, 3215713, 340044, 7575, 9088, 4617, 1285, 554, 7520284, 1253438, 9626789, 2800558, 237417, 31904, 10739, 8807934, 3564335, 324220, 2136369, 213363, 80100, 1645, 710, 73471, 12305, 626720, 104514, 249729, 315655, 776916, 887909, 370038, 23306]); a,b,c,d,e,f,g,h,i,j,k,l := Explode([G.1, G.2, G.4, G.6, G.7, G.8, G.10, G.11, G.13, G.14, G.16, G.17]); AssignNames(~G, ["a", "b", "b2", "c", "c2", "d", "e", "f", "f2", "g", "h", "h2", "i", "j", "j2", "k", "l"]);
 
Copy content gap:G := PcGroupCode(101423739071833290501474732415827227820307293731201978634366664295150444089424387132828460365904175141282694421904805611505094626932163737236187074328291664360387069168654981727059665753086881931241579503623226385401906853556290857542698561686996666263313024337808104634162578200448780255937051180290550288646030211998908946637671442347291710724677533247108752694459632367407071675926974250064511430834278400,294912); a := G.1; b := G.2; c := G.4; d := G.6; e := G.7; f := G.8; g := G.10; h := G.11; i := G.13; j := G.14; k := G.16; l := G.17;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(101423739071833290501474732415827227820307293731201978634366664295150444089424387132828460365904175141282694421904805611505094626932163737236187074328291664360387069168654981727059665753086881931241579503623226385401906853556290857542698561686996666263313024337808104634162578200448780255937051180290550288646030211998908946637671442347291710724677533247108752694459632367407071675926974250064511430834278400,294912)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.7; f = G.8; g = G.10; h = G.11; i = G.13; j = G.14; k = G.16; l = G.17;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(101423739071833290501474732415827227820307293731201978634366664295150444089424387132828460365904175141282694421904805611505094626932163737236187074328291664360387069168654981727059665753086881931241579503623226385401906853556290857542698561686996666263313024337808104634162578200448780255937051180290550288646030211998908946637671442347291710724677533247108752694459632367407071675926974250064511430834278400,294912)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.7; f = G.8; g = G.10; h = G.11; i = G.13; j = G.14; k = G.16; l = G.17;
 
Permutation group:Degree $35$ $\langle(1,2)(3,5)(4,6)(7,10)(8,11)(9,12)(13,16)(14,15)(18,19), (1,3)(2,5)(4,9) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 35 | (1,2)(3,5)(4,6)(7,10)(8,11)(9,12)(13,16)(14,15)(18,19), (1,3)(2,5)(4,9)(6,12)(7,13)(8,15)(10,16)(11,14)(18,19)(21,24)(25,29)(28,33)(32,35), (3,7)(5,10)(8,9)(11,12)(18,19)(23,27)(24,28)(26,31)(29,32), (1,2)(3,5)(8,11)(14,15)(18,19)(21,25)(24,29)(27,31)(30,34), (1,2)(3,5)(4,6)(7,10)(13,16)(14,15)(18,19)(23,26)(27,31), (1,2)(4,6)(13,16)(14,15)(18,19)(23,26)(24,29)(27,31)(28,32), (1,2)(3,5)(7,10)(8,11)(13,16)(14,15)(18,19)(27,31)(30,34), (1,4,7,14,13,12,2,6,10,15,16,9)(3,8,5,11)(18,19)(20,21,26,32,27,33,22,25,23,28,31,35)(24,30,29,34), (1,2)(3,5)(4,6)(7,10)(8,11)(9,12)(13,16)(14,15)(18,19)(20,22)(23,26)(27,31)(30,34), (1,2)(3,5)(4,6)(7,10)(8,11)(9,12)(13,16)(14,15)(18,19)(20,23)(21,24)(22,26)(25,29)(27,34)(28,33)(30,31)(32,35), (17,18,19), (1,2)(3,5)(7,10)(13,16)(18,19)(20,22)(23,26)(27,31)(30,34), (1,5)(2,3)(8,14)(11,15)(18,19)(27,34)(28,33)(30,31)(32,35), (18,19)(20,22)(23,26)(27,31)(30,34), (1,2)(3,5)(4,6)(7,10)(8,11)(9,12)(13,16)(14,15)(18,19)(20,22)(21,25)(23,26)(24,29)(27,31)(28,32)(30,34)(33,35) >;
 
Copy content gap:G := Group( (1,2)(3,5)(4,6)(7,10)(8,11)(9,12)(13,16)(14,15)(18,19), (1,3)(2,5)(4,9)(6,12)(7,13)(8,15)(10,16)(11,14)(18,19)(21,24)(25,29)(28,33)(32,35), (3,7)(5,10)(8,9)(11,12)(18,19)(23,27)(24,28)(26,31)(29,32), (1,2)(3,5)(8,11)(14,15)(18,19)(21,25)(24,29)(27,31)(30,34), (1,2)(3,5)(4,6)(7,10)(13,16)(14,15)(18,19)(23,26)(27,31), (1,2)(4,6)(13,16)(14,15)(18,19)(23,26)(24,29)(27,31)(28,32), (1,2)(3,5)(7,10)(8,11)(13,16)(14,15)(18,19)(27,31)(30,34), (1,4,7,14,13,12,2,6,10,15,16,9)(3,8,5,11)(18,19)(20,21,26,32,27,33,22,25,23,28,31,35)(24,30,29,34), (1,2)(3,5)(4,6)(7,10)(8,11)(9,12)(13,16)(14,15)(18,19)(20,22)(23,26)(27,31)(30,34), (1,2)(3,5)(4,6)(7,10)(8,11)(9,12)(13,16)(14,15)(18,19)(20,23)(21,24)(22,26)(25,29)(27,34)(28,33)(30,31)(32,35), (17,18,19), (1,2)(3,5)(7,10)(13,16)(18,19)(20,22)(23,26)(27,31)(30,34), (1,5)(2,3)(8,14)(11,15)(18,19)(27,34)(28,33)(30,31)(32,35), (18,19)(20,22)(23,26)(27,31)(30,34), (1,2)(3,5)(4,6)(7,10)(8,11)(9,12)(13,16)(14,15)(18,19)(20,22)(21,25)(23,26)(24,29)(27,31)(28,32)(30,34)(33,35) );
 
Copy content sage:G = PermutationGroup(['(1,2)(3,5)(4,6)(7,10)(8,11)(9,12)(13,16)(14,15)(18,19)', '(1,3)(2,5)(4,9)(6,12)(7,13)(8,15)(10,16)(11,14)(18,19)(21,24)(25,29)(28,33)(32,35)', '(3,7)(5,10)(8,9)(11,12)(18,19)(23,27)(24,28)(26,31)(29,32)', '(1,2)(3,5)(8,11)(14,15)(18,19)(21,25)(24,29)(27,31)(30,34)', '(1,2)(3,5)(4,6)(7,10)(13,16)(14,15)(18,19)(23,26)(27,31)', '(1,2)(4,6)(13,16)(14,15)(18,19)(23,26)(24,29)(27,31)(28,32)', '(1,2)(3,5)(7,10)(8,11)(13,16)(14,15)(18,19)(27,31)(30,34)', '(1,4,7,14,13,12,2,6,10,15,16,9)(3,8,5,11)(18,19)(20,21,26,32,27,33,22,25,23,28,31,35)(24,30,29,34)', '(1,2)(3,5)(4,6)(7,10)(8,11)(9,12)(13,16)(14,15)(18,19)(20,22)(23,26)(27,31)(30,34)', '(1,2)(3,5)(4,6)(7,10)(8,11)(9,12)(13,16)(14,15)(18,19)(20,23)(21,24)(22,26)(25,29)(27,34)(28,33)(30,31)(32,35)', '(17,18,19)', '(1,2)(3,5)(7,10)(13,16)(18,19)(20,22)(23,26)(27,31)(30,34)', '(1,5)(2,3)(8,14)(11,15)(18,19)(27,34)(28,33)(30,31)(32,35)', '(18,19)(20,22)(23,26)(27,31)(30,34)', '(1,2)(3,5)(4,6)(7,10)(8,11)(9,12)(13,16)(14,15)(18,19)(20,22)(21,25)(23,26)(24,29)(27,31)(28,32)(30,34)(33,35)'])
 
Direct product: $S_3$ $\, \times\, $ $(C_2^5.C_2^6:S_4)$
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_2^5.C_2^6:S_4)$ . $S_3$ $C_2^8$ . $(S_3\times C_2^3:S_4)$ $C_2^6$ . $(S_3\times C_2^5:S_4)$ (2) $S_3$ . $(C_2^5.C_2^6:S_4)$ all 64
Aut. group: $\Aut(C_2^4.D_6)$ $\Aut(C_2^4.D_6)$

Elements of the group are displayed as permutations of degree 35.

Homology

Abelianization: $C_{2}^{3} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{9}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 186 normal subgroups (78 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_2^2$ $G/Z \simeq$ $C_2^6.C_2^4.S_3^2.C_2$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_2^6.C_2^6.C_3^2$ $G/G' \simeq$ $C_2^3$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $D_4:C_2^5$ $G/\Phi \simeq$ $C_2^5:S_3^2$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_3\times C_2^6.C_2^6.C_2$ $G/\operatorname{Fit} \simeq$ $D_6$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $S_3\times C_2^5.C_2^6:S_4$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_2\times C_6$ $G/\operatorname{soc} \simeq$ $C_2^6.C_2^4.D_6.C_2$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^7.C_2^6.C_2^2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^2$

Subgroup diagram and profile

Series

Derived series $S_3\times C_2^5.C_2^6:S_4$ $\rhd$ $C_2^6.C_2^6.C_3^2$ $\rhd$ $C_2^6.C_2^6$ $\rhd$ $C_2^4$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $S_3\times C_2^5.C_2^6:S_4$ $\rhd$ $C_2^6.C_2^6.S_3^2$ $\rhd$ $(C_2^5\times C_6).C_2^6.C_6$ $\rhd$ $C_2^6.C_2^6.C_3^2$ $\rhd$ $C_2^6.C_2^6.C_3$ $\rhd$ $C_2^6.C_2^6$ $\rhd$ $C_2^6.C_2^4$ $\rhd$ $D_4:C_2^5$ $\rhd$ $C_2^6$ $\rhd$ $C_2^4$ $\rhd$ $C_2^3$ $\rhd$ $C_2^2$ $\rhd$ $C_2$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $S_3\times C_2^5.C_2^6:S_4$ $\rhd$ $C_2^6.C_2^6.C_3^2$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_2^2$ $\lhd$ $C_2^4$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $408 \times 408$ character table is not available for this group.

Rational character table

The $405 \times 405$ rational character table is not available for this group.