Properties

Label 283500000000.b
Order \( 2^{8} \cdot 3^{4} \cdot 5^{9} \cdot 7 \)
Exponent \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 7 \)
Nilpotent no
Solvable no
$\card{G^{\mathrm{ab}}}$ \( 2^{2} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{9} \cdot 3^{4} \cdot 5^{9} \cdot 7 \)
$\card{\mathrm{Out}(G)}$ \( 2 \)
Perm deg. $45$
Trans deg. $45$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 45 | (1,8,24,20,13,44,30,32,40,5,9,23,16,12,45,29,33,39)(2,7,25,19,14,43,26,31,36,4,10,22,17,11,41,28,34,38)(3,6,21,18,15,42,27,35,37), (1,28,18,41,25,38,9,31,4,30,16,43,23,40,7,33,2,27,19,45,21,37,10,35,5,29,17,42,24,39,8,32,3,26,20,44,22,36,6,34)(11,12)(13,15) >;
 
Copy content gap:G := Group( (1,8,24,20,13,44,30,32,40,5,9,23,16,12,45,29,33,39)(2,7,25,19,14,43,26,31,36,4,10,22,17,11,41,28,34,38)(3,6,21,18,15,42,27,35,37), (1,28,18,41,25,38,9,31,4,30,16,43,23,40,7,33,2,27,19,45,21,37,10,35,5,29,17,42,24,39,8,32,3,26,20,44,22,36,6,34)(11,12)(13,15) );
 
Copy content sage:G = PermutationGroup(['(1,8,24,20,13,44,30,32,40,5,9,23,16,12,45,29,33,39)(2,7,25,19,14,43,26,31,36,4,10,22,17,11,41,28,34,38)(3,6,21,18,15,42,27,35,37)', '(1,28,18,41,25,38,9,31,4,30,16,43,23,40,7,33,2,27,19,45,21,37,10,35,5,29,17,42,24,39,8,32,3,26,20,44,22,36,6,34)(11,12)(13,15)'])
 

Group information

Description:$C_5^8.A_9.C_2^2$
Order: \(283500000000\)\(\medspace = 2^{8} \cdot 3^{4} \cdot 5^{9} \cdot 7 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(12600\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 7 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(567000000000\)\(\medspace = 2^{9} \cdot 3^{4} \cdot 5^{9} \cdot 7 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 2, $C_5$ x 8, $A_9$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$1$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and nonsolvable.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 5 6 7 8 9 10 12 14 15 18 20 25 30 35 40 50 60 70 75 100
Elements 1 14395255 37104200 607257000 236640624 8321915000 405000000 7087500000 15750000000 15970839120 1701000000 14175000000 4106020800 15750000000 32113368000 945000000 68349960000 9720000000 28350000000 8505000000 21924000000 16200000000 7560000000 5670000000 283500000000
Conjugacy classes   1 9 3 8 88 17 1 2 1 581 4 3 172 1 235 28 412 8 4 36 60 4 10 2 1690
Divisions 1 9 3 8 46 17 1 2 1 297 4 3 87 1 120 14 208 4 2 18 30 2 5 1 884
Autjugacy classes 1 9 3 8 46 17 1 2 1 297 4 3 87 1 120 14 208 4 2 18 30 2 5 1 884

Minimal presentations

Permutation degree:$45$
Transitive degree:$45$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Permutation group:Degree $45$ $\langle(1,8,24,20,13,44,30,32,40,5,9,23,16,12,45,29,33,39)(2,7,25,19,14,43,26,31,36,4,10,22,17,11,41,28,34,38) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 45 | (1,8,24,20,13,44,30,32,40,5,9,23,16,12,45,29,33,39)(2,7,25,19,14,43,26,31,36,4,10,22,17,11,41,28,34,38)(3,6,21,18,15,42,27,35,37), (1,28,18,41,25,38,9,31,4,30,16,43,23,40,7,33,2,27,19,45,21,37,10,35,5,29,17,42,24,39,8,32,3,26,20,44,22,36,6,34)(11,12)(13,15) >;
 
Copy content gap:G := Group( (1,8,24,20,13,44,30,32,40,5,9,23,16,12,45,29,33,39)(2,7,25,19,14,43,26,31,36,4,10,22,17,11,41,28,34,38)(3,6,21,18,15,42,27,35,37), (1,28,18,41,25,38,9,31,4,30,16,43,23,40,7,33,2,27,19,45,21,37,10,35,5,29,17,42,24,39,8,32,3,26,20,44,22,36,6,34)(11,12)(13,15) );
 
Copy content sage:G = PermutationGroup(['(1,8,24,20,13,44,30,32,40,5,9,23,16,12,45,29,33,39)(2,7,25,19,14,43,26,31,36,4,10,22,17,11,41,28,34,38)(3,6,21,18,15,42,27,35,37)', '(1,28,18,41,25,38,9,31,4,30,16,43,23,40,7,33,2,27,19,45,21,37,10,35,5,29,17,42,24,39,8,32,3,26,20,44,22,36,6,34)(11,12)(13,15)'])
 
Transitive group: 45T7968 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_5^8.C_2)$ . $S_9$ $C_5^8$ . $(C_2\times S_9)$ $(C_5^8.A_9)$ . $C_2^2$ $(C_5^8.C_2.A_9)$ . $C_2$ all 6

Elements of the group are displayed as permutations of degree 45.

Homology

Abelianization: $C_{2}^{2} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 8 normal subgroups, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $C_5^8.A_9$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 2 larger groups in the database.

This group is a maximal quotient of 1 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $1690 \times 1690$ character table is not available for this group.

Rational character table

The $884 \times 884$ rational character table is not available for this group.