| Presentation: |
${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s \mid c^{6}= \!\cdots\! \rangle}$
|
magma:G := PCGroup([23, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 74642544, 586621717, 116, 1251518966, 446508984, 1685551139, 275167978, 144166441, 256, 989855604, 57919547, 463898090, 2555049029, 402676300, 304828803, 286562594, 97390699, 396, 2899777446, 1551334205, 554850488, 443256903, 221715452, 4644392583, 536828126, 1234704085, 641478172, 90392859, 68731850, 43467385, 536, 2451611960, 1267210975, 1126465074, 355028261, 34525216, 22030719, 57977948, 382734729, 1640632352, 120879775, 175022718, 316412021, 127205764, 63598827, 5124110, 9009523, 84813706, 3343583265, 538665392, 696051655, 419778714, 32069393, 16043890, 18656391, 12097136, 38154251, 19077154, 715472, 238567, 79614, 59765, 20044, 6819, 2926430220, 1483882019, 258417, 387608, 129295, 21678, 7349, 10960, 287110669, 250387236, 46739003, 395055442, 199197033, 68624768, 34405207, 11592174, 5780741, 2751924254, 1491617197, 1569242220, 144270803, 75712426, 2186049, 33087032, 8776975, 4421718, 325582863, 284885030, 40697917, 3391618, 2119833, 565424, 353479, 475656208, 281069607, 75672638, 64862293, 27026028, 11711363, 6756634, 1651761, 675848, 640991249, 183140392, 11446335, 4769412, 477083, 795058, 79689, 48328722, 24164393, 169150528, 84575319, 18123374, 14096005, 3020700, 1007027, 1174858, 3307164499, 198762, 2633238785, 413337688, 257541231, 14308020, 5741003, 6679148132, 561076027, 2684881146, 847978073, 350542192, 243710343, 130757918, 31530421, 12797772, 448113621, 2210657372, 853820419, 559595610, 59457137, 80441992, 39638175, 3886262, 8160973, 14802672694, 848562597, 1857951752, 1155437659, 793449330, 225481097, 73129120, 9141303, 17571470]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s := Explode([G.1, G.2, G.4, G.6, G.8, G.10, G.11, G.12, G.13, G.14, G.15, G.16, G.17, G.18, G.19, G.20, G.21, G.22, G.23]); AssignNames(~G, ["a", "b", "b2", "c", "c2", "d", "d2", "e", "e2", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s"]);
gap:G := PcGroupCode(103891787695827170816034082593989923086324239371886070170691250929631334252356605647993711267608217960113884220715243599447668726711284286263004847043886932755357323561741058049588128861690919697667479855319860657912262620152397993134030493182214523482556398864799909978400942199006203112112124983766813817285698665734101860285884834413129024311004767833822998133987430855599007650043522499707408724814072216286668598673359477927665041693587616413920880198845024914934339955496430736047323824555011568258531056525775264190316614910745866292174887148166570813013177184080837497843745201398886510157825008215746786388324950518548826146100757723314891912067119995880561290262206673076491291733936557768864712117448831078934206685208823044787972984134380268250634259675620876468158903848057095069004575667990107059220664961028178064361968194493382946558837702037982205516169836729900445744453461954172109490347670065912947185375147450655926260590955568794054855183811716955525710275076490416633618288122049641682132459787855309688555706613336531147950813107765500073053812043244754182740864531897909034633108637511992940879566131930339425328885501228623248028413761262309068514275861993368213891284092130173167518050060034302597450246196689391025733632,28311552); a := G.1; b := G.2; c := G.4; d := G.6; e := G.8; f := G.10; g := G.11; h := G.12; i := G.13; j := G.14; k := G.15; l := G.16; m := G.17; n := G.18; o := G.19; p := G.20; q := G.21; r := G.22; s := G.23;
sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(103891787695827170816034082593989923086324239371886070170691250929631334252356605647993711267608217960113884220715243599447668726711284286263004847043886932755357323561741058049588128861690919697667479855319860657912262620152397993134030493182214523482556398864799909978400942199006203112112124983766813817285698665734101860285884834413129024311004767833822998133987430855599007650043522499707408724814072216286668598673359477927665041693587616413920880198845024914934339955496430736047323824555011568258531056525775264190316614910745866292174887148166570813013177184080837497843745201398886510157825008215746786388324950518548826146100757723314891912067119995880561290262206673076491291733936557768864712117448831078934206685208823044787972984134380268250634259675620876468158903848057095069004575667990107059220664961028178064361968194493382946558837702037982205516169836729900445744453461954172109490347670065912947185375147450655926260590955568794054855183811716955525710275076490416633618288122049641682132459787855309688555706613336531147950813107765500073053812043244754182740864531897909034633108637511992940879566131930339425328885501228623248028413761262309068514275861993368213891284092130173167518050060034302597450246196689391025733632,28311552)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.10; g = G.11; h = G.12; i = G.13; j = G.14; k = G.15; l = G.16; m = G.17; n = G.18; o = G.19; p = G.20; q = G.21; r = G.22; s = G.23;
sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(103891787695827170816034082593989923086324239371886070170691250929631334252356605647993711267608217960113884220715243599447668726711284286263004847043886932755357323561741058049588128861690919697667479855319860657912262620152397993134030493182214523482556398864799909978400942199006203112112124983766813817285698665734101860285884834413129024311004767833822998133987430855599007650043522499707408724814072216286668598673359477927665041693587616413920880198845024914934339955496430736047323824555011568258531056525775264190316614910745866292174887148166570813013177184080837497843745201398886510157825008215746786388324950518548826146100757723314891912067119995880561290262206673076491291733936557768864712117448831078934206685208823044787972984134380268250634259675620876468158903848057095069004575667990107059220664961028178064361968194493382946558837702037982205516169836729900445744453461954172109490347670065912947185375147450655926260590955568794054855183811716955525710275076490416633618288122049641682132459787855309688555706613336531147950813107765500073053812043244754182740864531897909034633108637511992940879566131930339425328885501228623248028413761262309068514275861993368213891284092130173167518050060034302597450246196689391025733632,28311552)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.10; g = G.11; h = G.12; i = G.13; j = G.14; k = G.15; l = G.16; m = G.17; n = G.18; o = G.19; p = G.20; q = G.21; r = G.22; s = G.23;
|
| Permutation group: | Degree $36$
$\langle(1,3,6,2,4,5)(7,31,20,8,32,19)(9,33,22)(10,34,21)(11,36,24)(12,35,23)(13,16,17) \!\cdots\! \rangle$
|
magma:G := PermutationGroup< 36 | (1,3,6,2,4,5)(7,31,20,8,32,19)(9,33,22)(10,34,21)(11,36,24)(12,35,23)(13,16,17)(14,15,18)(25,28,29)(26,27,30), (1,23)(2,24)(3,19)(4,20)(5,22,6,21)(7,25,8,26)(9,28,10,27)(11,30)(12,29)(13,31)(14,32)(15,34,16,33)(17,35)(18,36), (1,34,13,19,2,33,14,20)(3,32,15,23)(4,31,16,24)(5,35,18,21)(6,36,17,22)(7,26,8,25)(9,29)(10,30)(11,28,12,27) >;
gap:G := Group( (1,3,6,2,4,5)(7,31,20,8,32,19)(9,33,22)(10,34,21)(11,36,24)(12,35,23)(13,16,17)(14,15,18)(25,28,29)(26,27,30), (1,23)(2,24)(3,19)(4,20)(5,22,6,21)(7,25,8,26)(9,28,10,27)(11,30)(12,29)(13,31)(14,32)(15,34,16,33)(17,35)(18,36), (1,34,13,19,2,33,14,20)(3,32,15,23)(4,31,16,24)(5,35,18,21)(6,36,17,22)(7,26,8,25)(9,29)(10,30)(11,28,12,27) );
sage:G = PermutationGroup(['(1,3,6,2,4,5)(7,31,20,8,32,19)(9,33,22)(10,34,21)(11,36,24)(12,35,23)(13,16,17)(14,15,18)(25,28,29)(26,27,30)', '(1,23)(2,24)(3,19)(4,20)(5,22,6,21)(7,25,8,26)(9,28,10,27)(11,30)(12,29)(13,31)(14,32)(15,34,16,33)(17,35)(18,36)', '(1,34,13,19,2,33,14,20)(3,32,15,23)(4,31,16,24)(5,35,18,21)(6,36,17,22)(7,26,8,25)(9,29)(10,30)(11,28,12,27)'])
|
| Transitive group: |
36T69470 |
36T69471 |
|
|
more information |
| Direct product: |
not computed |
| Semidirect product: |
not computed |
| Trans. wreath product: |
not isomorphic to a non-trivial transitive wreath product |
| Possibly split product: |
$C_2^{17}$ . $(S_3^2:S_3)$ |
$C_2^{15}$ . $(S_3^2:S_4)$ |
$C_2^{16}$ . $(S_3^2:D_6)$ |
$C_2^{13}$ . $(D_6^2:S_4)$ |
all 51 |
Elements of the group are displayed as permutations of degree 36.
The $1728 \times 1728$ character table is not available for this group.
The $1632 \times 1632$ rational character table is not available for this group.