Properties

Label 28311552.bh
Order \( 2^{20} \cdot 3^{3} \)
Exponent \( 2^{3} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \cdot 3 \)
$\card{Z(G)}$ 2
$\card{\Aut(G)}$ \( 2^{24} \cdot 3^{4} \)
$\card{\mathrm{Out}(G)}$ \( 2^{5} \cdot 3 \)
Perm deg. not computed
Trans deg. $36$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,23,27,35,3,19,29,31,6,21,25,34)(2,24,28,36,4,20,30,32,5,22,26,33)(7,13,12,18,9,15,8,14,11,17,10,16), (1,25,5,30,3,28,2,26,6,29,4,27)(7,36,12,33,10,31,8,35,11,34,9,32)(13,15,18,14,16,17)(19,22,24,20,21,23), (1,3,5)(2,4,6)(7,21,32,8,22,31)(9,23,33,10,24,34)(11,20,35)(12,19,36)(13,26,18,29,15,28,14,25,17,30,16,27) >;
 
Copy content gap:G := Group( (1,23,27,35,3,19,29,31,6,21,25,34)(2,24,28,36,4,20,30,32,5,22,26,33)(7,13,12,18,9,15,8,14,11,17,10,16), (1,25,5,30,3,28,2,26,6,29,4,27)(7,36,12,33,10,31,8,35,11,34,9,32)(13,15,18,14,16,17)(19,22,24,20,21,23), (1,3,5)(2,4,6)(7,21,32,8,22,31)(9,23,33,10,24,34)(11,20,35)(12,19,36)(13,26,18,29,15,28,14,25,17,30,16,27) );
 
Copy content sage:G = PermutationGroup(['(1,23,27,35,3,19,29,31,6,21,25,34)(2,24,28,36,4,20,30,32,5,22,26,33)(7,13,12,18,9,15,8,14,11,17,10,16)', '(1,25,5,30,3,28,2,26,6,29,4,27)(7,36,12,33,10,31,8,35,11,34,9,32)(13,15,18,14,16,17)(19,22,24,20,21,23)', '(1,3,5)(2,4,6)(7,21,32,8,22,31)(9,23,33,10,24,34)(11,20,35)(12,19,36)(13,26,18,29,15,28,14,25,17,30,16,27)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(101092905757180632735794762301331720523779965777143074104426669431755994729764669647264285414003792530762410013335502048254864847143486938799342640382998420121336876542635412868103998100459544184203071554842003124365434635448540462864972471704662771447978382757195655077338485931231349199029870204901962446790079108263382555010181317812775676530209368181524020024283242172773840355502837783593498137137537379800988310348313947799574586617542298465059744515859469614315700244285998744665941202317920297924963030474777020958927767700263213484312880336401480189913238920637870432041749767716360699890852611462134765284856114545501938190989468904817066370523716907759201172027723565925520196492673523687673377955247356431950280175250383430944977910577497913616208489578539907260998967455586774846261201620759456153643420089770809898744954153376485173579284117713383175252413409286475305393930066706918264908832907959550171099656591776188921628227139883323870957488105740577417414778214138167281460542595533244636109587424482473945772183654734374722946501974638906798350310766372007720484892610435850013010196473952702176242926278057759782750995440360667786609741389479045774427131451511025425843762916541321136511275472673473711845826767854898681502108311338059327256450955255870596348297141583526290988126993645767270997003156318922053864790539579236451423777582219284480,28311552)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.7; f = G.8; g = G.10; h = G.12; i = G.13; j = G.14; k = G.15; l = G.16; m = G.17; n = G.18; o = G.19; p = G.20; q = G.21; r = G.22; s = G.23;
 

Group information

Description:$C_2^{12}.(C_6\times S_4\wr C_2)$
Order: \(28311552\)\(\medspace = 2^{20} \cdot 3^{3} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(1358954496\)\(\medspace = 2^{24} \cdot 3^{4} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 20, $C_3$ x 3
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 12 24
Elements 1 250879 90368 2927616 8036096 2064384 12582912 2359296 28311552
Conjugacy classes   1 1401 8 1518 246 20 114 4 3312
Divisions 1 1401 5 1518 215 20 96 2 3258
Autjugacy classes 1 255 5 174 75 6 21 1 538

Minimal presentations

Permutation degree:not computed
Transitive degree:$36$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 18 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s \mid c^{4}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([23, 2, 3, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 46, 455307288, 807394808, 490032988, 216958128, 1595095635, 618735170, 266712281, 256, 67611724, 73527807, 169096510, 1076572229, 1531228708, 94812675, 184081586, 43707733, 34338936, 4342452078, 530160149, 692812676, 133703491, 101984582, 17150163, 1854864, 2718666247, 2100779550, 582305589, 182165964, 215260963, 25175002, 1985, 536, 1974640904, 279042655, 245644470, 141104525, 84244132, 37352859, 1802, 590463369, 2969870432, 995528375, 359455118, 100210181, 31028044, 28199067, 31258550, 17443, 676, 4362513418, 2366331297, 191308536, 78895599, 106284390, 137664509, 47064220, 14466711, 4678670, 1953497099, 216525346, 2225721, 408250448, 59788, 34971, 10154, 6037, 2856162828, 1033379, 353403706, 30311505, 11022509, 5522128, 1837275, 920564, 3071416333, 1539046692, 381330491, 597961810, 463785, 231968, 116071, 11951526, 5952689, 1992112, 992325, 6123755534, 209848357, 15897660, 45109523, 1987329, 795032, 83021, 33364, 101744655, 1994194982, 74612797, 217055316, 16957547, 4663449, 388830, 176885, 8410466320, 21620775, 3603518, 311248597, 4504428, 225370, 18991, 47166, 915701777, 4681525288, 190771263, 897101654, 28615789, 4769412, 6677170, 2146377, 914336, 377815, 9303275538, 4724130857, 12082240, 89609559, 7048046, 9061765, 5286108, 63153, 199520, 11013857299, 5583237162, 131420225, 505543768, 45573231, 32855174, 15102877, 1589940, 3974603, 684706, 695769, 10613078804, 90139435, 1994195010, 409522265, 285163312, 35749863, 124706894, 8937613, 13371576, 10392455, 4454476, 793926165, 10492460, 46633050, 149517041, 74758600, 37379391, 18689798, 18421, 3115164, 3287, 6387814678, 259607853, 312016964, 400381147, 78309042, 273167273, 78080560, 39040383, 29270834, 1631665, 4066146]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s := Explode([G.1, G.3, G.4, G.6, G.7, G.8, G.10, G.12, G.13, G.14, G.15, G.16, G.17, G.18, G.19, G.20, G.21, G.22, G.23]); AssignNames(~G, ["a", "a2", "b", "c", "c2", "d", "e", "f", "f2", "g", "g2", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s"]);
 
Copy content gap:G := PcGroupCode(101092905757180632735794762301331720523779965777143074104426669431755994729764669647264285414003792530762410013335502048254864847143486938799342640382998420121336876542635412868103998100459544184203071554842003124365434635448540462864972471704662771447978382757195655077338485931231349199029870204901962446790079108263382555010181317812775676530209368181524020024283242172773840355502837783593498137137537379800988310348313947799574586617542298465059744515859469614315700244285998744665941202317920297924963030474777020958927767700263213484312880336401480189913238920637870432041749767716360699890852611462134765284856114545501938190989468904817066370523716907759201172027723565925520196492673523687673377955247356431950280175250383430944977910577497913616208489578539907260998967455586774846261201620759456153643420089770809898744954153376485173579284117713383175252413409286475305393930066706918264908832907959550171099656591776188921628227139883323870957488105740577417414778214138167281460542595533244636109587424482473945772183654734374722946501974638906798350310766372007720484892610435850013010196473952702176242926278057759782750995440360667786609741389479045774427131451511025425843762916541321136511275472673473711845826767854898681502108311338059327256450955255870596348297141583526290988126993645767270997003156318922053864790539579236451423777582219284480,28311552); a := G.1; b := G.3; c := G.4; d := G.6; e := G.7; f := G.8; g := G.10; h := G.12; i := G.13; j := G.14; k := G.15; l := G.16; m := G.17; n := G.18; o := G.19; p := G.20; q := G.21; r := G.22; s := G.23;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(101092905757180632735794762301331720523779965777143074104426669431755994729764669647264285414003792530762410013335502048254864847143486938799342640382998420121336876542635412868103998100459544184203071554842003124365434635448540462864972471704662771447978382757195655077338485931231349199029870204901962446790079108263382555010181317812775676530209368181524020024283242172773840355502837783593498137137537379800988310348313947799574586617542298465059744515859469614315700244285998744665941202317920297924963030474777020958927767700263213484312880336401480189913238920637870432041749767716360699890852611462134765284856114545501938190989468904817066370523716907759201172027723565925520196492673523687673377955247356431950280175250383430944977910577497913616208489578539907260998967455586774846261201620759456153643420089770809898744954153376485173579284117713383175252413409286475305393930066706918264908832907959550171099656591776188921628227139883323870957488105740577417414778214138167281460542595533244636109587424482473945772183654734374722946501974638906798350310766372007720484892610435850013010196473952702176242926278057759782750995440360667786609741389479045774427131451511025425843762916541321136511275472673473711845826767854898681502108311338059327256450955255870596348297141583526290988126993645767270997003156318922053864790539579236451423777582219284480,28311552)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.7; f = G.8; g = G.10; h = G.12; i = G.13; j = G.14; k = G.15; l = G.16; m = G.17; n = G.18; o = G.19; p = G.20; q = G.21; r = G.22; s = G.23;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(101092905757180632735794762301331720523779965777143074104426669431755994729764669647264285414003792530762410013335502048254864847143486938799342640382998420121336876542635412868103998100459544184203071554842003124365434635448540462864972471704662771447978382757195655077338485931231349199029870204901962446790079108263382555010181317812775676530209368181524020024283242172773840355502837783593498137137537379800988310348313947799574586617542298465059744515859469614315700244285998744665941202317920297924963030474777020958927767700263213484312880336401480189913238920637870432041749767716360699890852611462134765284856114545501938190989468904817066370523716907759201172027723565925520196492673523687673377955247356431950280175250383430944977910577497913616208489578539907260998967455586774846261201620759456153643420089770809898744954153376485173579284117713383175252413409286475305393930066706918264908832907959550171099656591776188921628227139883323870957488105740577417414778214138167281460542595533244636109587424482473945772183654734374722946501974638906798350310766372007720484892610435850013010196473952702176242926278057759782750995440360667786609741389479045774427131451511025425843762916541321136511275472673473711845826767854898681502108311338059327256450955255870596348297141583526290988126993645767270997003156318922053864790539579236451423777582219284480,28311552)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.7; f = G.8; g = G.10; h = G.12; i = G.13; j = G.14; k = G.15; l = G.16; m = G.17; n = G.18; o = G.19; p = G.20; q = G.21; r = G.22; s = G.23;
 
Permutation group:Degree $36$ $\langle(1,23,27,35,3,19,29,31,6,21,25,34)(2,24,28,36,4,20,30,32,5,22,26,33)(7,13,12,18,9,15,8,14,11,17,10,16) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,23,27,35,3,19,29,31,6,21,25,34)(2,24,28,36,4,20,30,32,5,22,26,33)(7,13,12,18,9,15,8,14,11,17,10,16), (1,25,5,30,3,28,2,26,6,29,4,27)(7,36,12,33,10,31,8,35,11,34,9,32)(13,15,18,14,16,17)(19,22,24,20,21,23), (1,3,5)(2,4,6)(7,21,32,8,22,31)(9,23,33,10,24,34)(11,20,35)(12,19,36)(13,26,18,29,15,28,14,25,17,30,16,27) >;
 
Copy content gap:G := Group( (1,23,27,35,3,19,29,31,6,21,25,34)(2,24,28,36,4,20,30,32,5,22,26,33)(7,13,12,18,9,15,8,14,11,17,10,16), (1,25,5,30,3,28,2,26,6,29,4,27)(7,36,12,33,10,31,8,35,11,34,9,32)(13,15,18,14,16,17)(19,22,24,20,21,23), (1,3,5)(2,4,6)(7,21,32,8,22,31)(9,23,33,10,24,34)(11,20,35)(12,19,36)(13,26,18,29,15,28,14,25,17,30,16,27) );
 
Copy content sage:G = PermutationGroup(['(1,23,27,35,3,19,29,31,6,21,25,34)(2,24,28,36,4,20,30,32,5,22,26,33)(7,13,12,18,9,15,8,14,11,17,10,16)', '(1,25,5,30,3,28,2,26,6,29,4,27)(7,36,12,33,10,31,8,35,11,34,9,32)(13,15,18,14,16,17)(19,22,24,20,21,23)', '(1,3,5)(2,4,6)(7,21,32,8,22,31)(9,23,33,10,24,34)(11,20,35)(12,19,36)(13,26,18,29,15,28,14,25,17,30,16,27)'])
 
Transitive group: 36T69424 36T69427 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_2^{17}$ . $(S_3^2:C_6)$ $C_2^{13}$ . $(S_4^2:C_6)$ $C_2^{11}$ . $(A_4^3:D_4)$ $C_2^{15}$ . $(D_6^2:C_6)$ all 54

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2}^{2} \times C_{6} \simeq C_{2}^{3} \times C_{3}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{7}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 93 normal subgroups (61 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_2$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_2^2$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^9.C_2^6.C_2^5$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 6 larger groups in the database.

This group is a maximal quotient of 1 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $3312 \times 3312$ character table is not available for this group.

Rational character table

The $3258 \times 3258$ rational character table is not available for this group.