| Presentation: | 
    ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s \mid c^{4}= \!\cdots\! \rangle}$
    
    
    
         
    
    
         
    
 | 
 
    
    
    
         
        magma:G := PCGroup([23, 2, 3, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 46, 455307288, 807394808, 490032988, 216958128, 1595095635, 618735170, 266712281, 256, 67611724, 73527807, 169096510, 1076572229, 1531228708, 94812675, 184081586, 43707733, 34338936, 4342452078, 530160149, 692812676, 133703491, 101984582, 17150163, 1854864, 2718666247, 2100779550, 582305589, 182165964, 215260963, 25175002, 1985, 536, 1974640904, 279042655, 245644470, 141104525, 84244132, 37352859, 1802, 590463369, 2969870432, 995528375, 359455118, 100210181, 31028044, 28199067, 31258550, 17443, 676, 4362513418, 2366331297, 191308536, 78895599, 106284390, 137664509, 47064220, 14466711, 4678670, 1953497099, 216525346, 2225721, 408250448, 59788, 34971, 10154, 6037, 2856162828, 1033379, 353403706, 30311505, 11022509, 5522128, 1837275, 920564, 3071416333, 1539046692, 381330491, 597961810, 463785, 231968, 116071, 11951526, 5952689, 1992112, 992325, 6123755534, 209848357, 15897660, 45109523, 1987329, 795032, 83021, 33364, 101744655, 1994194982, 74612797, 217055316, 16957547, 4663449, 388830, 176885, 8410466320, 21620775, 3603518, 311248597, 4504428, 225370, 18991, 47166, 915701777, 4681525288, 190771263, 897101654, 28615789, 4769412, 6677170, 2146377, 914336, 377815, 9303275538, 4724130857, 12082240, 89609559, 7048046, 9061765, 5286108, 63153, 199520, 11013857299, 5583237162, 131420225, 505543768, 45573231, 32855174, 15102877, 1589940, 3974603, 684706, 695769, 10613078804, 90139435, 1994195010, 409522265, 285163312, 35749863, 124706894, 8937613, 13371576, 10392455, 4454476, 793926165, 10492460, 46633050, 149517041, 74758600, 37379391, 18689798, 18421, 3115164, 3287, 6387814678, 259607853, 312016964, 400381147, 78309042, 273167273, 78080560, 39040383, 29270834, 1631665, 4066146]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s := Explode([G.1, G.3, G.4, G.6, G.7, G.8, G.10, G.12, G.13, G.14, G.15, G.16, G.17, G.18, G.19, G.20, G.21, G.22, G.23]); AssignNames(~G, ["a", "a2", "b", "c", "c2", "d", "e", "f", "f2", "g", "g2", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s"]);
          
     
    
    
         
        gap:G := PcGroupCode(101092905757180632735794762301331720523779965777143074104426669431755994729764669647264285414003792530762410013335502048254864847143486938799342640382998420121336876542635412868103998100459544184203071554842003124365434635448540462864972471704662771447978382757195655077338485931231349199029870204901962446790079108263382555010181317812775676530209368181524020024283242172773840355502837783593498137137537379800988310348313947799574586617542298465059744515859469614315700244285998744665941202317920297924963030474777020958927767700263213484312880336401480189913238920637870432041749767716360699890852611462134765284856114545501938190989468904817066370523716907759201172027723565925520196492673523687673377955247356431950280175250383430944977910577497913616208489578539907260998967455586774846261201620759456153643420089770809898744954153376485173579284117713383175252413409286475305393930066706918264908832907959550171099656591776188921628227139883323870957488105740577417414778214138167281460542595533244636109587424482473945772183654734374722946501974638906798350310766372007720484892610435850013010196473952702176242926278057759782750995440360667786609741389479045774427131451511025425843762916541321136511275472673473711845826767854898681502108311338059327256450955255870596348297141583526290988126993645767270997003156318922053864790539579236451423777582219284480,28311552); a := G.1; b := G.3; c := G.4; d := G.6; e := G.7; f := G.8; g := G.10; h := G.12; i := G.13; j := G.14; k := G.15; l := G.16; m := G.17; n := G.18; o := G.19; p := G.20; q := G.21; r := G.22; s := G.23;
          
     
    
    
         
        sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(101092905757180632735794762301331720523779965777143074104426669431755994729764669647264285414003792530762410013335502048254864847143486938799342640382998420121336876542635412868103998100459544184203071554842003124365434635448540462864972471704662771447978382757195655077338485931231349199029870204901962446790079108263382555010181317812775676530209368181524020024283242172773840355502837783593498137137537379800988310348313947799574586617542298465059744515859469614315700244285998744665941202317920297924963030474777020958927767700263213484312880336401480189913238920637870432041749767716360699890852611462134765284856114545501938190989468904817066370523716907759201172027723565925520196492673523687673377955247356431950280175250383430944977910577497913616208489578539907260998967455586774846261201620759456153643420089770809898744954153376485173579284117713383175252413409286475305393930066706918264908832907959550171099656591776188921628227139883323870957488105740577417414778214138167281460542595533244636109587424482473945772183654734374722946501974638906798350310766372007720484892610435850013010196473952702176242926278057759782750995440360667786609741389479045774427131451511025425843762916541321136511275472673473711845826767854898681502108311338059327256450955255870596348297141583526290988126993645767270997003156318922053864790539579236451423777582219284480,28311552)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.7; f = G.8; g = G.10; h = G.12; i = G.13; j = G.14; k = G.15; l = G.16; m = G.17; n = G.18; o = G.19; p = G.20; q = G.21; r = G.22; s = G.23;
          
     
    
    
         
        sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(101092905757180632735794762301331720523779965777143074104426669431755994729764669647264285414003792530762410013335502048254864847143486938799342640382998420121336876542635412868103998100459544184203071554842003124365434635448540462864972471704662771447978382757195655077338485931231349199029870204901962446790079108263382555010181317812775676530209368181524020024283242172773840355502837783593498137137537379800988310348313947799574586617542298465059744515859469614315700244285998744665941202317920297924963030474777020958927767700263213484312880336401480189913238920637870432041749767716360699890852611462134765284856114545501938190989468904817066370523716907759201172027723565925520196492673523687673377955247356431950280175250383430944977910577497913616208489578539907260998967455586774846261201620759456153643420089770809898744954153376485173579284117713383175252413409286475305393930066706918264908832907959550171099656591776188921628227139883323870957488105740577417414778214138167281460542595533244636109587424482473945772183654734374722946501974638906798350310766372007720484892610435850013010196473952702176242926278057759782750995440360667786609741389479045774427131451511025425843762916541321136511275472673473711845826767854898681502108311338059327256450955255870596348297141583526290988126993645767270997003156318922053864790539579236451423777582219284480,28311552)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.7; f = G.8; g = G.10; h = G.12; i = G.13; j = G.14; k = G.15; l = G.16; m = G.17; n = G.18; o = G.19; p = G.20; q = G.21; r = G.22; s = G.23;
          
     
     | 
| Permutation group: | Degree $36$
    $\langle(1,23,27,35,3,19,29,31,6,21,25,34)(2,24,28,36,4,20,30,32,5,22,26,33)(7,13,12,18,9,15,8,14,11,17,10,16) \!\cdots\! \rangle$
    
    
    
         
    
    
         
    
 | 
 
    
    
    
         
        magma:G := PermutationGroup< 36 | (1,23,27,35,3,19,29,31,6,21,25,34)(2,24,28,36,4,20,30,32,5,22,26,33)(7,13,12,18,9,15,8,14,11,17,10,16), (1,25,5,30,3,28,2,26,6,29,4,27)(7,36,12,33,10,31,8,35,11,34,9,32)(13,15,18,14,16,17)(19,22,24,20,21,23), (1,3,5)(2,4,6)(7,21,32,8,22,31)(9,23,33,10,24,34)(11,20,35)(12,19,36)(13,26,18,29,15,28,14,25,17,30,16,27) >;
          
     
    
    
         
        gap:G := Group( (1,23,27,35,3,19,29,31,6,21,25,34)(2,24,28,36,4,20,30,32,5,22,26,33)(7,13,12,18,9,15,8,14,11,17,10,16), (1,25,5,30,3,28,2,26,6,29,4,27)(7,36,12,33,10,31,8,35,11,34,9,32)(13,15,18,14,16,17)(19,22,24,20,21,23), (1,3,5)(2,4,6)(7,21,32,8,22,31)(9,23,33,10,24,34)(11,20,35)(12,19,36)(13,26,18,29,15,28,14,25,17,30,16,27) );
          
     
    
    
         
        sage:G = PermutationGroup(['(1,23,27,35,3,19,29,31,6,21,25,34)(2,24,28,36,4,20,30,32,5,22,26,33)(7,13,12,18,9,15,8,14,11,17,10,16)', '(1,25,5,30,3,28,2,26,6,29,4,27)(7,36,12,33,10,31,8,35,11,34,9,32)(13,15,18,14,16,17)(19,22,24,20,21,23)', '(1,3,5)(2,4,6)(7,21,32,8,22,31)(9,23,33,10,24,34)(11,20,35)(12,19,36)(13,26,18,29,15,28,14,25,17,30,16,27)'])
          
     
     | 
  | Transitive group: | 
  36T69424 | 
  36T69427 | 
   | 
   | 
  more information | 
  | Direct product: | 
  not computed | 
  | Semidirect product: | 
  not computed | 
  | Trans. wreath product: | 
  not isomorphic to a non-trivial transitive wreath product | 
  | Possibly split product: | 
  $C_2^{17}$ . $(S_3^2:C_6)$ | 
  $C_2^{13}$ . $(S_4^2:C_6)$ | 
  $C_2^{11}$ . $(A_4^3:D_4)$ | 
  $C_2^{15}$ . $(D_6^2:C_6)$ | 
  all 54 | 
Elements of the group are displayed as permutations of degree 36.
 
 The $3312 \times 3312$ character table is not available for this group. 
  
  
      The $3258 \times 3258$ rational character table is not available for this group.