Properties

Label 282...456.cz
Order \( 2^{16} \cdot 3^{16} \)
Exponent \( 2^{4} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{4} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{18} \cdot 3^{16} \)
$\card{\mathrm{Out}(G)}$ \( 2^{2} \)
Perm deg. $36$
Trans deg. $36$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,14,2,13)(3,15)(5,6)(7,32,21,8,31,19)(9,33,20)(10,11,12)(17,18)(22,36,24,35)(23,34)(26,27)(28,30,29), (1,18,26,29,15,4,2,17,27,28,13,5)(3,16,25,30,14,6)(7,35,9,34,8,36)(10,20,12,21)(11,19)(22,32,23,33,24,31), (1,13,3,14,2,15)(4,22,17,10,5,23,18,11,6,24,16,12)(7,8,9)(19,31,21,33,20,32)(25,26)(28,36)(29,35)(30,34) >;
 
Copy content gap:G := Group( (1,14,2,13)(3,15)(5,6)(7,32,21,8,31,19)(9,33,20)(10,11,12)(17,18)(22,36,24,35)(23,34)(26,27)(28,30,29), (1,18,26,29,15,4,2,17,27,28,13,5)(3,16,25,30,14,6)(7,35,9,34,8,36)(10,20,12,21)(11,19)(22,32,23,33,24,31), (1,13,3,14,2,15)(4,22,17,10,5,23,18,11,6,24,16,12)(7,8,9)(19,31,21,33,20,32)(25,26)(28,36)(29,35)(30,34) );
 
Copy content sage:G = PermutationGroup(['(1,14,2,13)(3,15)(5,6)(7,32,21,8,31,19)(9,33,20)(10,11,12)(17,18)(22,36,24,35)(23,34)(26,27)(28,30,29)', '(1,18,26,29,15,4,2,17,27,28,13,5)(3,16,25,30,14,6)(7,35,9,34,8,36)(10,20,12,21)(11,19)(22,32,23,33,24,31)', '(1,13,3,14,2,15)(4,22,17,10,5,23,18,11,6,24,16,12)(7,8,9)(19,31,21,33,20,32)(25,26)(28,36)(29,35)(30,34)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(984804502128743190419909013353704700146952142127582707295118484153356832433276338380325371918146044462106125897001931144715797348852113940044471301623685779472302323766154158461649568038517031689033211288412430336264931551574226005309482570448836127972900057316267452009893629436879543684437441891578438567933413288465180126079966270967085376462674345917171602849007850178891202176007277862149771624657158204619980413107615299946711354035799278011916376126404403311567730630986927576626074380726294396379995309526503057193876207697255425201384264485001145245579471496006699023545561564042802672247986918518279031488893151014884018867891024746082123602891913564840350991672262949046902441303317877518531695585795263365886314894493100256431200287553072334433961596433669368403233488789223390495418081770930406467670184228436541987026187301134637376042409136686641416632428904168479412041262684014881468075162610165944607100496150439810717881715380826151056785754241028887030216864171333319159537810788874506391702875667731185337098229466225462519938365693856473079739111624931813629466009590131609262907976616629175682210987817547900398874434811274782807761479065663816011996391047059160356666189028704128406794656912756318069183860750318583217046878801773626529527873023535355092259630502786103220793901159100919715453376739614950374069314915955700393533819504144983968645798830063141714873784635701256970930003435687892020208956723169279383526342620442273223622835618041183573927956239650841392527904150574995284328730090295319344098824871997380807107735070239461479723526644601212090329763325714090270652434604176241739701369000028909227503027023074309404656222215549428835473129695813532371368194020407896106554453532958095798808813229609665306981610642567204218718078958791320274264461199438027609334106481071522265553596951962319077406391324814839163913364971303946847550482735246605578456957519147080185111942075833031819846960071256166149019372088622684382058047286596862933160603785898691494483077635514389080084637579960443277805764693524943016509161315724360292362383512080030347706686521511384083317552758490910505395983240519343417941635445757817980818521029385571016062583481497547720777544480442994795120134105311417365501810599332539130333852498393586708158922359246840180567028582250282508017820292994076360082721621581925091214637014388206717619931550950748745413805846153065952234354644492595540696128561546009781359077766252967503216133411926774131164462495662947796552749336890942667365419394187577316756224250138324994830286970720991495166390421061565606009243267498004154936132013498436561559612373066594636364799851823790230745989603348986417622837873153926919774815954708977691688680271561441059784555566966207972956297538413067774948988582305062766780331762049500804966014314074709364446293920580736641085132138777340730978797321652534447647122488593108588530766928295790347537057178350394592893314438231666642920797844233829715439130828372840803071043807624525145347809113829564460812474706985296475089144937057251727026652135711900586992923070986232334694329499684536304282711626865024822633448772595258850774329692960620999123204253361847586713372931220024361565809021718023333589696274008853631427307129198471119856641963917169942860615569775142048584483978726481243863878307346949791707410796509049688760246171226317360788592932370972813956480725297357478496652083803777426992214586110157605587881285170158267146505354941198759166551854316037053786327006919966328372300249220448256496865074283783312134683228198639224542009236559249407585541123127427047248347166847918917493607572862839162981560393502300297415925638601469189647062194069147628827711205766311122059569933930153543653476195227572909445454980820987384279627429379033481181473269789955886650342660048562915428770820634054575950313682789408261517283341301006961769621412438401467682760279067520507152975639958827554935114371709754069139890383515976621835233053048213412479304827913462284035291874695306912414780102111757539603795134526027541593919882221545854019239498026577966974919252029182466814853700214351262385209546227523255051347659710869950376587198464764061304390277443643079563765859183560775326676660337797278999324428783782639098195641267931224842183304890041528205788498181756596345400752501636882898890156869777509703295550233652884476369601221200716453605506579435657252356691674292982437742147112328057399447513767922899244174225528096894074308595217346702132696099665489874706465663959417039791053438375085815036483465140915150322103390664238522778531880933170009351162339515706886785001707953445265619068844782940580182026607372802453450795297927663147906471450665285868954389457849953778695590496403336900371980336991298103284139813689415683704857438776687939226070251887469706242949403361379070037255945352628176010763753737199445249916070289278409403782114184086381337476075641846350542887103785889767061649820611817883734133550142496317039580168381266416451953456808282041375699694839438053425327185367707187889420971031755634441392451152255581521540064404876377240137957338466924394737359420804245669995216007073314286335,2821109907456)'); a = G.1; b = G.3; c = G.5; d = G.6; e = G.8; f = G.10; g = G.12; h = G.14; i = G.16; j = G.18; k = G.20; l = G.22; m = G.24; n = G.26; o = G.27; p = G.28; q = G.29; r = G.30; s = G.31; t = G.32;
 

Group information

Description:$C_3^{12}.C_2^8.C_3^4.C_2^2:D_4.D_4$
Order: \(2821109907456\)\(\medspace = 2^{16} \cdot 3^{16} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(11284439629824\)\(\medspace = 2^{18} \cdot 3^{16} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 16, $C_3$ x 16
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$5$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 9 12 16 18 24 36 48 72
Elements 1 50324031 96059600 21164607936 95491371312 217980564480 3390724800 939306585600 117546246144 212285406528 668514041856 271009400832 235092492288 39182082048 2821109907456
Conjugacy classes   1 50 120 141 2123 36 122 2616 4 495 140 444 4 14 6310
Divisions 1 50 120 117 2119 26 122 2123 2 492 88 320 2 6 5588
Autjugacy classes 1 48 119 105 2068 17 112 2050 1 462 66 300 1 5 5355

Minimal presentations

Permutation degree:$36$
Transitive degree:$36$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t \mid d^{4}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([32, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 64, 81290684989473, 195426815322242, 1156396367458, 258, 188043612652547, 3941242405411, 35609447096419, 257311435554564, 116555590534436, 53023550003908, 33126591718820, 665330104452, 271907417120261, 72129733266469, 85931892318789, 35918039194469, 26298911027461, 549, 387344185604102, 23888186678310, 39816401096262, 11427683063654, 22290359885830, 463153261674503, 236114518491175, 83469512601671, 62935633899623, 25284765423751, 20975010671783, 5388824435399, 743, 659461243871240, 351261734031400, 40994686863432, 62879792744552, 14280115396744, 16044047364264, 4516517161928, 954881944968, 768840050688009, 311380685905961, 51373791580233, 2814769367145, 5275512468617, 7982344199849, 10694331782601, 5103843653993, 2205912601225, 937, 907127118053386, 169314242887722, 152730093215818, 93258234550378, 38319742433418, 24581157103530, 14605144891594, 2677379375850, 2777617563338, 363921237834, 901084685008907, 23859991314475, 109805410664523, 12163467866219, 12569909907595, 5673524668587, 6120443372747, 2034527107051, 2893350782859, 1169772740651, 114419300299, 1131, 1001699572383756, 360971752587308, 141658905856076, 56371847860332, 65402699861132, 23020590268588, 7065598984908, 3421020515564, 3963891110668, 1381385331756, 628055590988, 37854536076, 21968113434637, 177432529010733, 251192986619981, 55841016397933, 39879788175501, 32328406720685, 1825205308621, 5512831446765, 767642980877, 143824520749, 231031939149, 179355195629, 38505323533, 1325, 1238400368654, 62290253905998, 125771082670190, 62850784481422, 16080419635374, 241865118926, 7861140357358, 31711357710, 59789102, 218081353326, 598434312093711, 299735887380527, 146771540410447, 179131754741871, 79596528795791, 3213254586543, 12946776514767, 463453360367, 4419352424719, 528687839535, 265019240783, 106924345711, 89317785999, 15909326255, 1519, 862788412440592, 349578648944688, 22759488675920, 2326940172400, 42693264138384, 7500147545008, 5285977602256, 10739660438256, 2236765605392, 1274745708592, 746958945360, 303667976816, 136269878800, 930753078165521, 5449014706225, 99250668306513, 151549847617649, 67815818293393, 48336994031793, 19610041089233, 9438551101681, 3567184261905, 491266778417, 317524686673, 124489913841, 16048736465, 17898009265, 2584926065, 951784657, 1713, 1525793364246546, 412821906849874, 79714936111218, 40047788593298, 35302655803570, 10098598413522, 4981464617714, 5288152794898, 672032692530, 175708984658, 279490936690, 56006401938, 9446204594, 365298, 811578365706259, 256365465108531, 343525442642003, 101241864437875, 97865127936147, 42545426964659, 1188436562131, 647645276403, 3657367572755, 1975908142387, 553638585939, 237816008051, 4366760083, 6783183859, 2423635731, 150133043, 276206035, 1907, 1421719035641876, 152941957152852, 177608526004340, 44212509573268, 22242954295476, 250822868, 170183752948, 5553433073940, 926737459508, 922719071572, 305324345460, 8543695604, 4279686292, 518106796720149, 287915311005749, 403621069344853, 204110565728373, 39572760674453, 38992779809461, 26500027834581, 6338144305397, 1167373735189, 1704668613429, 1183341785813, 102947716981, 3721804821, 854904245, 213954517, 1311704565, 5390935445, 161517877, 297450453, 3958517, 991189, 2101, 22803252903958, 1503216009302, 96839861575798, 119778877590, 714248644790, 24285510789334, 12038502431478, 48211856918, 1015055401270, 1010625694038, 1925750, 9357645814, 4687407894, 2100383443058711, 510147324149815, 281723458240599, 203730829738103, 116196939694231, 1209837441207, 23713866768599, 15790235738359, 4396777832727, 1854639950135, 1185671333719, 169191576951, 215303588759, 29423886775, 29367153111, 3325971959, 2489564695, 1311676983, 1012829783, 322680439, 67945623, 38546615, 22674391, 2295, 1189845349171224, 303395084697656, 360410657587288, 1848921292920, 27927311155352, 65662386739384, 10749542616, 4635740160248, 2197385625912, 16348262744, 91595059576, 71103744408, 85018104, 5086541336, 26611768, 413496, 166619627126873, 55003258552473, 54437139873977, 13750814638297, 34936013113, 572950610265, 5305098745, 80870937, 60601, 10745, 1564775628668954, 372873247064122, 164395785683034, 2378873733242, 1398407970970, 68221972334778, 436673286362, 5711876849914, 95778423066, 2471483280698, 13115561818, 157967511930, 39674956442, 886837690, 4414031354, 5472189466, 4106362, 187322, 114810, 543221675458587, 197683925483579, 186951849541723, 1318100926587, 59821091979419, 64704553353403, 14810799145179, 3088128540923, 90296156443, 999463256379, 623136375131, 83793734011, 82661548443, 836075963, 7900914171, 20902427, 3871355, 581307, 97531, 723120220274716, 68506340032572, 186149803622492, 90390027534460, 74024426520732, 58232478818492, 16161846423772, 1069256982780, 215098343708, 626708690236, 659382115164, 29040906620, 22697328796, 1991651772, 6819241468, 184011804, 726424124, 11225724, 1804732, 301436, 458341377638429, 2317123584061, 252949645394013, 25088237568125, 51839548784797, 6944682148029, 10101733171421, 219290665213, 2399297863965, 930571960637, 399943941469, 166906967421, 2339228573, 22215721405, 3090493949, 327214653, 33592957, 5599421, 933885, 116542684790814, 211430472155198, 322166488596574, 80936314601598, 162465171849374, 48697292316862, 31890667438302, 3492311335166, 899736699166, 171742436670, 1282957885790, 145547256190, 91732414878, 8330895806, 11940950526, 983509022, 116993086, 104351102, 17356734, 2893438, 338251248304159, 818569977790527, 661265233477727, 147115657396351, 93904435151007, 84018106663103, 22888785641695, 12624262594815, 5479686734111, 879094923583, 920160829791, 263743783295, 165925159327, 50737840575, 8432419327, 704692767, 1733198399, 201278079, 33583807, 8958719]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t := Explode([G.1, G.3, G.5, G.6, G.8, G.10, G.12, G.14, G.16, G.18, G.20, G.22, G.24, G.26, G.27, G.28, G.29, G.30, G.31, G.32]); AssignNames(~G, ["a", "a2", "b", "b2", "c", "d", "d2", "e", "e2", "f", "f2", "g", "g2", "h", "h2", "i", "i2", "j", "j2", "k", "k2", "l", "l2", "m", "m2", "n", "o", "p", "q", "r", "s", "t"]);
 
Copy content gap:G := PcGroupCode(984804502128743190419909013353704700146952142127582707295118484153356832433276338380325371918146044462106125897001931144715797348852113940044471301623685779472302323766154158461649568038517031689033211288412430336264931551574226005309482570448836127972900057316267452009893629436879543684437441891578438567933413288465180126079966270967085376462674345917171602849007850178891202176007277862149771624657158204619980413107615299946711354035799278011916376126404403311567730630986927576626074380726294396379995309526503057193876207697255425201384264485001145245579471496006699023545561564042802672247986918518279031488893151014884018867891024746082123602891913564840350991672262949046902441303317877518531695585795263365886314894493100256431200287553072334433961596433669368403233488789223390495418081770930406467670184228436541987026187301134637376042409136686641416632428904168479412041262684014881468075162610165944607100496150439810717881715380826151056785754241028887030216864171333319159537810788874506391702875667731185337098229466225462519938365693856473079739111624931813629466009590131609262907976616629175682210987817547900398874434811274782807761479065663816011996391047059160356666189028704128406794656912756318069183860750318583217046878801773626529527873023535355092259630502786103220793901159100919715453376739614950374069314915955700393533819504144983968645798830063141714873784635701256970930003435687892020208956723169279383526342620442273223622835618041183573927956239650841392527904150574995284328730090295319344098824871997380807107735070239461479723526644601212090329763325714090270652434604176241739701369000028909227503027023074309404656222215549428835473129695813532371368194020407896106554453532958095798808813229609665306981610642567204218718078958791320274264461199438027609334106481071522265553596951962319077406391324814839163913364971303946847550482735246605578456957519147080185111942075833031819846960071256166149019372088622684382058047286596862933160603785898691494483077635514389080084637579960443277805764693524943016509161315724360292362383512080030347706686521511384083317552758490910505395983240519343417941635445757817980818521029385571016062583481497547720777544480442994795120134105311417365501810599332539130333852498393586708158922359246840180567028582250282508017820292994076360082721621581925091214637014388206717619931550950748745413805846153065952234354644492595540696128561546009781359077766252967503216133411926774131164462495662947796552749336890942667365419394187577316756224250138324994830286970720991495166390421061565606009243267498004154936132013498436561559612373066594636364799851823790230745989603348986417622837873153926919774815954708977691688680271561441059784555566966207972956297538413067774948988582305062766780331762049500804966014314074709364446293920580736641085132138777340730978797321652534447647122488593108588530766928295790347537057178350394592893314438231666642920797844233829715439130828372840803071043807624525145347809113829564460812474706985296475089144937057251727026652135711900586992923070986232334694329499684536304282711626865024822633448772595258850774329692960620999123204253361847586713372931220024361565809021718023333589696274008853631427307129198471119856641963917169942860615569775142048584483978726481243863878307346949791707410796509049688760246171226317360788592932370972813956480725297357478496652083803777426992214586110157605587881285170158267146505354941198759166551854316037053786327006919966328372300249220448256496865074283783312134683228198639224542009236559249407585541123127427047248347166847918917493607572862839162981560393502300297415925638601469189647062194069147628827711205766311122059569933930153543653476195227572909445454980820987384279627429379033481181473269789955886650342660048562915428770820634054575950313682789408261517283341301006961769621412438401467682760279067520507152975639958827554935114371709754069139890383515976621835233053048213412479304827913462284035291874695306912414780102111757539603795134526027541593919882221545854019239498026577966974919252029182466814853700214351262385209546227523255051347659710869950376587198464764061304390277443643079563765859183560775326676660337797278999324428783782639098195641267931224842183304890041528205788498181756596345400752501636882898890156869777509703295550233652884476369601221200716453605506579435657252356691674292982437742147112328057399447513767922899244174225528096894074308595217346702132696099665489874706465663959417039791053438375085815036483465140915150322103390664238522778531880933170009351162339515706886785001707953445265619068844782940580182026607372802453450795297927663147906471450665285868954389457849953778695590496403336900371980336991298103284139813689415683704857438776687939226070251887469706242949403361379070037255945352628176010763753737199445249916070289278409403782114184086381337476075641846350542887103785889767061649820611817883734133550142496317039580168381266416451953456808282041375699694839438053425327185367707187889420971031755634441392451152255581521540064404876377240137957338466924394737359420804245669995216007073314286335,2821109907456); a := G.1; b := G.3; c := G.5; d := G.6; e := G.8; f := G.10; g := G.12; h := G.14; i := G.16; j := G.18; k := G.20; l := G.22; m := G.24; n := G.26; o := G.27; p := G.28; q := G.29; r := G.30; s := G.31; t := G.32;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(984804502128743190419909013353704700146952142127582707295118484153356832433276338380325371918146044462106125897001931144715797348852113940044471301623685779472302323766154158461649568038517031689033211288412430336264931551574226005309482570448836127972900057316267452009893629436879543684437441891578438567933413288465180126079966270967085376462674345917171602849007850178891202176007277862149771624657158204619980413107615299946711354035799278011916376126404403311567730630986927576626074380726294396379995309526503057193876207697255425201384264485001145245579471496006699023545561564042802672247986918518279031488893151014884018867891024746082123602891913564840350991672262949046902441303317877518531695585795263365886314894493100256431200287553072334433961596433669368403233488789223390495418081770930406467670184228436541987026187301134637376042409136686641416632428904168479412041262684014881468075162610165944607100496150439810717881715380826151056785754241028887030216864171333319159537810788874506391702875667731185337098229466225462519938365693856473079739111624931813629466009590131609262907976616629175682210987817547900398874434811274782807761479065663816011996391047059160356666189028704128406794656912756318069183860750318583217046878801773626529527873023535355092259630502786103220793901159100919715453376739614950374069314915955700393533819504144983968645798830063141714873784635701256970930003435687892020208956723169279383526342620442273223622835618041183573927956239650841392527904150574995284328730090295319344098824871997380807107735070239461479723526644601212090329763325714090270652434604176241739701369000028909227503027023074309404656222215549428835473129695813532371368194020407896106554453532958095798808813229609665306981610642567204218718078958791320274264461199438027609334106481071522265553596951962319077406391324814839163913364971303946847550482735246605578456957519147080185111942075833031819846960071256166149019372088622684382058047286596862933160603785898691494483077635514389080084637579960443277805764693524943016509161315724360292362383512080030347706686521511384083317552758490910505395983240519343417941635445757817980818521029385571016062583481497547720777544480442994795120134105311417365501810599332539130333852498393586708158922359246840180567028582250282508017820292994076360082721621581925091214637014388206717619931550950748745413805846153065952234354644492595540696128561546009781359077766252967503216133411926774131164462495662947796552749336890942667365419394187577316756224250138324994830286970720991495166390421061565606009243267498004154936132013498436561559612373066594636364799851823790230745989603348986417622837873153926919774815954708977691688680271561441059784555566966207972956297538413067774948988582305062766780331762049500804966014314074709364446293920580736641085132138777340730978797321652534447647122488593108588530766928295790347537057178350394592893314438231666642920797844233829715439130828372840803071043807624525145347809113829564460812474706985296475089144937057251727026652135711900586992923070986232334694329499684536304282711626865024822633448772595258850774329692960620999123204253361847586713372931220024361565809021718023333589696274008853631427307129198471119856641963917169942860615569775142048584483978726481243863878307346949791707410796509049688760246171226317360788592932370972813956480725297357478496652083803777426992214586110157605587881285170158267146505354941198759166551854316037053786327006919966328372300249220448256496865074283783312134683228198639224542009236559249407585541123127427047248347166847918917493607572862839162981560393502300297415925638601469189647062194069147628827711205766311122059569933930153543653476195227572909445454980820987384279627429379033481181473269789955886650342660048562915428770820634054575950313682789408261517283341301006961769621412438401467682760279067520507152975639958827554935114371709754069139890383515976621835233053048213412479304827913462284035291874695306912414780102111757539603795134526027541593919882221545854019239498026577966974919252029182466814853700214351262385209546227523255051347659710869950376587198464764061304390277443643079563765859183560775326676660337797278999324428783782639098195641267931224842183304890041528205788498181756596345400752501636882898890156869777509703295550233652884476369601221200716453605506579435657252356691674292982437742147112328057399447513767922899244174225528096894074308595217346702132696099665489874706465663959417039791053438375085815036483465140915150322103390664238522778531880933170009351162339515706886785001707953445265619068844782940580182026607372802453450795297927663147906471450665285868954389457849953778695590496403336900371980336991298103284139813689415683704857438776687939226070251887469706242949403361379070037255945352628176010763753737199445249916070289278409403782114184086381337476075641846350542887103785889767061649820611817883734133550142496317039580168381266416451953456808282041375699694839438053425327185367707187889420971031755634441392451152255581521540064404876377240137957338466924394737359420804245669995216007073314286335,2821109907456)'); a = G.1; b = G.3; c = G.5; d = G.6; e = G.8; f = G.10; g = G.12; h = G.14; i = G.16; j = G.18; k = G.20; l = G.22; m = G.24; n = G.26; o = G.27; p = G.28; q = G.29; r = G.30; s = G.31; t = G.32;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(984804502128743190419909013353704700146952142127582707295118484153356832433276338380325371918146044462106125897001931144715797348852113940044471301623685779472302323766154158461649568038517031689033211288412430336264931551574226005309482570448836127972900057316267452009893629436879543684437441891578438567933413288465180126079966270967085376462674345917171602849007850178891202176007277862149771624657158204619980413107615299946711354035799278011916376126404403311567730630986927576626074380726294396379995309526503057193876207697255425201384264485001145245579471496006699023545561564042802672247986918518279031488893151014884018867891024746082123602891913564840350991672262949046902441303317877518531695585795263365886314894493100256431200287553072334433961596433669368403233488789223390495418081770930406467670184228436541987026187301134637376042409136686641416632428904168479412041262684014881468075162610165944607100496150439810717881715380826151056785754241028887030216864171333319159537810788874506391702875667731185337098229466225462519938365693856473079739111624931813629466009590131609262907976616629175682210987817547900398874434811274782807761479065663816011996391047059160356666189028704128406794656912756318069183860750318583217046878801773626529527873023535355092259630502786103220793901159100919715453376739614950374069314915955700393533819504144983968645798830063141714873784635701256970930003435687892020208956723169279383526342620442273223622835618041183573927956239650841392527904150574995284328730090295319344098824871997380807107735070239461479723526644601212090329763325714090270652434604176241739701369000028909227503027023074309404656222215549428835473129695813532371368194020407896106554453532958095798808813229609665306981610642567204218718078958791320274264461199438027609334106481071522265553596951962319077406391324814839163913364971303946847550482735246605578456957519147080185111942075833031819846960071256166149019372088622684382058047286596862933160603785898691494483077635514389080084637579960443277805764693524943016509161315724360292362383512080030347706686521511384083317552758490910505395983240519343417941635445757817980818521029385571016062583481497547720777544480442994795120134105311417365501810599332539130333852498393586708158922359246840180567028582250282508017820292994076360082721621581925091214637014388206717619931550950748745413805846153065952234354644492595540696128561546009781359077766252967503216133411926774131164462495662947796552749336890942667365419394187577316756224250138324994830286970720991495166390421061565606009243267498004154936132013498436561559612373066594636364799851823790230745989603348986417622837873153926919774815954708977691688680271561441059784555566966207972956297538413067774948988582305062766780331762049500804966014314074709364446293920580736641085132138777340730978797321652534447647122488593108588530766928295790347537057178350394592893314438231666642920797844233829715439130828372840803071043807624525145347809113829564460812474706985296475089144937057251727026652135711900586992923070986232334694329499684536304282711626865024822633448772595258850774329692960620999123204253361847586713372931220024361565809021718023333589696274008853631427307129198471119856641963917169942860615569775142048584483978726481243863878307346949791707410796509049688760246171226317360788592932370972813956480725297357478496652083803777426992214586110157605587881285170158267146505354941198759166551854316037053786327006919966328372300249220448256496865074283783312134683228198639224542009236559249407585541123127427047248347166847918917493607572862839162981560393502300297415925638601469189647062194069147628827711205766311122059569933930153543653476195227572909445454980820987384279627429379033481181473269789955886650342660048562915428770820634054575950313682789408261517283341301006961769621412438401467682760279067520507152975639958827554935114371709754069139890383515976621835233053048213412479304827913462284035291874695306912414780102111757539603795134526027541593919882221545854019239498026577966974919252029182466814853700214351262385209546227523255051347659710869950376587198464764061304390277443643079563765859183560775326676660337797278999324428783782639098195641267931224842183304890041528205788498181756596345400752501636882898890156869777509703295550233652884476369601221200716453605506579435657252356691674292982437742147112328057399447513767922899244174225528096894074308595217346702132696099665489874706465663959417039791053438375085815036483465140915150322103390664238522778531880933170009351162339515706886785001707953445265619068844782940580182026607372802453450795297927663147906471450665285868954389457849953778695590496403336900371980336991298103284139813689415683704857438776687939226070251887469706242949403361379070037255945352628176010763753737199445249916070289278409403782114184086381337476075641846350542887103785889767061649820611817883734133550142496317039580168381266416451953456808282041375699694839438053425327185367707187889420971031755634441392451152255581521540064404876377240137957338466924394737359420804245669995216007073314286335,2821109907456)'); a = G.1; b = G.3; c = G.5; d = G.6; e = G.8; f = G.10; g = G.12; h = G.14; i = G.16; j = G.18; k = G.20; l = G.22; m = G.24; n = G.26; o = G.27; p = G.28; q = G.29; r = G.30; s = G.31; t = G.32;
 
Permutation group:Degree $36$ $\langle(1,14,2,13)(3,15)(5,6)(7,32,21,8,31,19)(9,33,20)(10,11,12)(17,18)(22,36,24,35) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,14,2,13)(3,15)(5,6)(7,32,21,8,31,19)(9,33,20)(10,11,12)(17,18)(22,36,24,35)(23,34)(26,27)(28,30,29), (1,18,26,29,15,4,2,17,27,28,13,5)(3,16,25,30,14,6)(7,35,9,34,8,36)(10,20,12,21)(11,19)(22,32,23,33,24,31), (1,13,3,14,2,15)(4,22,17,10,5,23,18,11,6,24,16,12)(7,8,9)(19,31,21,33,20,32)(25,26)(28,36)(29,35)(30,34) >;
 
Copy content gap:G := Group( (1,14,2,13)(3,15)(5,6)(7,32,21,8,31,19)(9,33,20)(10,11,12)(17,18)(22,36,24,35)(23,34)(26,27)(28,30,29), (1,18,26,29,15,4,2,17,27,28,13,5)(3,16,25,30,14,6)(7,35,9,34,8,36)(10,20,12,21)(11,19)(22,32,23,33,24,31), (1,13,3,14,2,15)(4,22,17,10,5,23,18,11,6,24,16,12)(7,8,9)(19,31,21,33,20,32)(25,26)(28,36)(29,35)(30,34) );
 
Copy content sage:G = PermutationGroup(['(1,14,2,13)(3,15)(5,6)(7,32,21,8,31,19)(9,33,20)(10,11,12)(17,18)(22,36,24,35)(23,34)(26,27)(28,30,29)', '(1,18,26,29,15,4,2,17,27,28,13,5)(3,16,25,30,14,6)(7,35,9,34,8,36)(10,20,12,21)(11,19)(22,32,23,33,24,31)', '(1,13,3,14,2,15)(4,22,17,10,5,23,18,11,6,24,16,12)(7,8,9)(19,31,21,33,20,32)(25,26)(28,36)(29,35)(30,34)'])
 
Transitive group: 36T119998 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_3^{12}$ . $(A_4^2.S_4^2:C_2^3.D_4)$ $(C_3^{12}.C_2^8.C_3.S_3^3.C_2^3)$ . $C_4$ $(C_3^{12}.C_2^8.C_3^4.C_2^2:Q_8)$ . $D_4$ (2) $(C_3^{12}.C_2^8.C_3^4.C_2^2:Q_8)$ . $D_4$ (2) all 41

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2}^{2} \times C_{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 86 normal subgroups (46 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^5.C_2^5.C_2^4.C_2^2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^{12}.C_3^4$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 3 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $6310 \times 6310$ character table is not available for this group.

Rational character table

The $5588 \times 5588$ rational character table is not available for this group.