Properties

Label 279936.jm
Order \( 2^{7} \cdot 3^{7} \)
Exponent \( 2 \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2 \cdot 3 \)
$\card{Z(G)}$ \( 2 \)
$\card{\Aut(G)}$ \( 2^{14} \cdot 3^{9} \)
$\card{\mathrm{Out}(G)}$ \( 2^{8} \cdot 3^{2} \)
Perm deg. $24$
Trans deg. $36$
Rank $4$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 24 | (3,6,9)(13,15)(18,23,21), (2,4)(5,7)(10,11)(13,15)(16,17,20)(18,21,23)(19,22,24), (1,2,3,7,8,6,5,4,9)(10,12,15,11,14,13)(16,18,22,17,21,19,20,23,24), (1,3,8)(2,5,9)(4,7,6)(10,13,12,11,15,14)(16,19,18,17,22,23,20,24,21) >;
 
Copy content gap:G := Group( (3,6,9)(13,15)(18,23,21), (2,4)(5,7)(10,11)(13,15)(16,17,20)(18,21,23)(19,22,24), (1,2,3,7,8,6,5,4,9)(10,12,15,11,14,13)(16,18,22,17,21,19,20,23,24), (1,3,8)(2,5,9)(4,7,6)(10,13,12,11,15,14)(16,19,18,17,22,23,20,24,21) );
 
Copy content sage:G = PermutationGroup(['(3,6,9)(13,15)(18,23,21)', '(2,4)(5,7)(10,11)(13,15)(16,17,20)(18,21,23)(19,22,24)', '(1,2,3,7,8,6,5,4,9)(10,12,15,11,14,13)(16,18,22,17,21,19,20,23,24)', '(1,3,8)(2,5,9)(4,7,6)(10,13,12,11,15,14)(16,19,18,17,22,23,20,24,21)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(2824566463314884914616878320274743698972149124684441060990473776430871864162430526815052156230584227658100696629397503430771150527249494303893808992774907987466142718164433808880309178057062031702529623691294900111306835487046689081539712767566685566555892400811217122766876503542119688537260133565403346761935901896807910380679290828335830864967226027,279936)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.8; f = G.10; g = G.12; h = G.14;
 

Group information

Description:$C_3^6.C_2^5:A_4$
Order: \(279936\)\(\medspace = 2^{7} \cdot 3^{7} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_6^6.A_4^2.C_6.C_2^3$, of order \(322486272\)\(\medspace = 2^{14} \cdot 3^{9} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 7, $C_3$ x 7
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 6 9 18
Elements 1 6271 11096 96680 82944 82944 279936
Conjugacy classes   1 43 34 538 16 16 648
Divisions 1 43 25 465 8 8 550
Autjugacy classes 1 7 10 46 2 2 68

Minimal presentations

Permutation degree:$24$
Transitive degree:$36$
Rank: $4$
Inequivalent generating quadruples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 12 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h \mid c^{6}=d^{6}=e^{6}=f^{6}=g^{6}=h^{3}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([14, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 28, 1758639, 2500094, 2512960, 78654, 9029667, 1808369, 105423, 157, 15240964, 1088658, 592, 12593453, 9057655, 158289, 81191, 243, 592710, 550388, 2400, 17198503, 11865189, 108913, 3437, 329, 907208, 780214, 54482, 3102, 19337649, 15705083, 1512037, 110931, 388159, 61427, 415, 1086634, 487896, 11140, 22256, 25046795, 21663961, 2177319, 181521, 30349, 5177, 501, 4380, 19813274, 1887016, 157330, 26318, 4506, 12197485, 21342075, 4064297, 508115, 84783, 14251]); a,b,c,d,e,f,g,h := Explode([G.1, G.3, G.4, G.6, G.8, G.10, G.12, G.14]); AssignNames(~G, ["a", "a2", "b", "c", "c2", "d", "d2", "e", "e2", "f", "f2", "g", "g2", "h"]);
 
Copy content gap:G := PcGroupCode(2824566463314884914616878320274743698972149124684441060990473776430871864162430526815052156230584227658100696629397503430771150527249494303893808992774907987466142718164433808880309178057062031702529623691294900111306835487046689081539712767566685566555892400811217122766876503542119688537260133565403346761935901896807910380679290828335830864967226027,279936); a := G.1; b := G.3; c := G.4; d := G.6; e := G.8; f := G.10; g := G.12; h := G.14;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(2824566463314884914616878320274743698972149124684441060990473776430871864162430526815052156230584227658100696629397503430771150527249494303893808992774907987466142718164433808880309178057062031702529623691294900111306835487046689081539712767566685566555892400811217122766876503542119688537260133565403346761935901896807910380679290828335830864967226027,279936)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.8; f = G.10; g = G.12; h = G.14;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(2824566463314884914616878320274743698972149124684441060990473776430871864162430526815052156230584227658100696629397503430771150527249494303893808992774907987466142718164433808880309178057062031702529623691294900111306835487046689081539712767566685566555892400811217122766876503542119688537260133565403346761935901896807910380679290828335830864967226027,279936)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.8; f = G.10; g = G.12; h = G.14;
 
Permutation group:Degree $24$ $\langle(3,6,9)(13,15)(18,23,21), (2,4)(5,7)(10,11)(13,15)(16,17,20)(18,21,23)(19,22,24) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 24 | (3,6,9)(13,15)(18,23,21), (2,4)(5,7)(10,11)(13,15)(16,17,20)(18,21,23)(19,22,24), (1,2,3,7,8,6,5,4,9)(10,12,15,11,14,13)(16,18,22,17,21,19,20,23,24), (1,3,8)(2,5,9)(4,7,6)(10,13,12,11,15,14)(16,19,18,17,22,23,20,24,21) >;
 
Copy content gap:G := Group( (3,6,9)(13,15)(18,23,21), (2,4)(5,7)(10,11)(13,15)(16,17,20)(18,21,23)(19,22,24), (1,2,3,7,8,6,5,4,9)(10,12,15,11,14,13)(16,18,22,17,21,19,20,23,24), (1,3,8)(2,5,9)(4,7,6)(10,13,12,11,15,14)(16,19,18,17,22,23,20,24,21) );
 
Copy content sage:G = PermutationGroup(['(3,6,9)(13,15)(18,23,21)', '(2,4)(5,7)(10,11)(13,15)(16,17,20)(18,21,23)(19,22,24)', '(1,2,3,7,8,6,5,4,9)(10,12,15,11,14,13)(16,18,22,17,21,19,20,23,24)', '(1,3,8)(2,5,9)(4,7,6)(10,13,12,11,15,14)(16,19,18,17,22,23,20,24,21)'])
 
Transitive group: 36T25491 more information
Direct product: $C_2$ $\, \times\, $ $(C_3^6.C_2^4:A_4)$
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_3^6.C_2^5)$ . $A_4$ (3) $C_3^6$ . $(C_2^5:A_4)$ $(C_3^6.C_2^6)$ . $C_6$ $(C_3^6.C_2^4:A_4)$ . $C_2$ all 21

Elements of the group are displayed as permutations of degree 24.

Homology

Abelianization: $C_{6} \simeq C_{2} \times C_{3}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{9}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $2$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 122 normal subgroups (12 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_2$ $G/Z \simeq$ $C_3^6.C_2^4:A_4$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_3^6.C_2^6$ $G/G' \simeq$ $C_6$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_1$ $G/\Phi \simeq$ $C_3^6.C_2^5:A_4$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_3^3\times C_6^3$ $G/\operatorname{Fit} \simeq$ $C_2^2:A_4$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_3^6.C_2^5:A_4$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_3^3\times C_6^3$ $G/\operatorname{soc} \simeq$ $C_2^2:A_4$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^7$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^2\wr C_3$

Subgroup diagram and profile

Series

Derived series $C_3^6.C_2^5:A_4$ $\rhd$ $C_3^6.C_2^6$ $\rhd$ $C_3^6$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_3^6.C_2^5:A_4$ $\rhd$ $C_3^6.C_2^4:A_4$ $\rhd$ $C_3^6.C_2^6$ $\rhd$ $C_3^6.C_2^4$ $\rhd$ $C_3^3\times C_3^3:C_2^2$ $\rhd$ $C_3^6$ $\rhd$ $C_3^3$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_3^6.C_2^5:A_4$ $\rhd$ $C_3^6.C_2^6$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_2$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 15 larger groups in the database.

This group is a maximal quotient of 2 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $648 \times 648$ character table is not available for this group.

Rational character table

The $550 \times 550$ rational character table is not available for this group.