Presentation: |
${\langle a, b, c, d, e, f, g, h, i, j, k, l \mid d^{8}=e^{6}=f^{24}=g^{3}= \!\cdots\! \rangle}$
|
magma:G := PCGroup([20, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 336037120, 607403761, 101, 837216722, 162, 172124803, 375103, 1347694404, 1199014424, 7530044, 249293064, 127718484, 1121790725, 144758425, 174388845, 187461665, 188776165, 345, 1239642886, 387515546, 851170926, 142142626, 31240806, 406, 3936276487, 335267867, 677360687, 361044547, 143904087, 969477128, 84051388, 611907888, 414472388, 225622168, 69697548, 44116688, 1948, 528, 1427865609, 2082816029, 1328384049, 248243269, 187558489, 143238509, 68200129, 1749, 3980472330, 1867525470, 646722610, 701226310, 119644890, 93952430, 44739330, 1502310, 6915650, 1949170, 650, 3110830091, 2542533151, 1417666611, 445040711, 1705051, 137525871, 85033091, 8807191, 400491, 70751, 711, 6864332812, 1814042912, 802347572, 813296712, 142072412, 73033072, 54989092, 436952, 156172, 358992, 772, 2759680013, 588349473, 1692006453, 536309833, 164398193, 79085573, 53913, 265420814, 2296627234, 624844854, 15206474, 8294514, 19699334, 172954, 173014, 410634, 3854, 2724986895, 3401400355, 73728055, 194641995, 4792435, 43131015, 553115, 1198255, 100055, 898795, 11775, 1629388816, 2088996, 357212216, 15667276, 92436596, 23696776, 1762716, 1925976, 493916, 36976, 2251653137, 4184985637, 555217977, 540288077, 159529057, 206259957, 137966537, 5598877, 7309617, 1417177, 721677, 304817, 929218578, 4781603878, 296606778, 904144718, 147671138, 107117558, 67786058, 17729438, 5691058, 830138, 355918, 191778, 6512640019, 2794393639, 1276723259, 390169679, 304742499, 278790519, 38172939, 55987359, 15321779, 3485019, 1281839, 638659]); a,b,c,d,e,f,g,h,i,j,k,l := Explode([G.1, G.2, G.5, G.6, G.9, G.11, G.15, G.16, G.17, G.18, G.19, G.20]); AssignNames(~G, ["a", "b", "b2", "b4", "c", "d", "d2", "d4", "e", "e2", "f", "f2", "f4", "f8", "g", "h", "i", "j", "k", "l"]);
gap:G := PcGroupCode(9707746780383874800067990993893892924005672292479953080215768746017174162243351626750431451228286731900538962983500254897693441063363428867427774443765124669939818250390803043110674505055865549636198815626701792227998218690121381345415479780466466055821972932432189540532257220979752909202341952831029082868886326745339291876703865240033347375270180211301213196542646250594306425282277246871852379327142111635064209724355968753089968523576605035974733269599928686341761523894459876941353423556034069233973155924444145483339086935886107767261659095123020961089940625582393921527055797107912864808329840510467869698119859897579967095981831649225981339762781145801402698440069707282144645055805226279644215040133806493415222019652887839848399214457293785145336251470714463001596504530963135196049630867720584958020014985464200972044272498070724897359472842444082162009681975812146629583342284874045431713122483937553255791241275149746954381094877606797059792848468809129629313351193358246415440325204874936840851720222096624181314560633314560028929312366013395776822253376821981026699510068144536360405448317308745292068661624875335970934611451283621077714425236223557424490754189353446006944079771862143,26873856); a := G.1; b := G.2; c := G.5; d := G.6; e := G.9; f := G.11; g := G.15; h := G.16; i := G.17; j := G.18; k := G.19; l := G.20;
sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(9707746780383874800067990993893892924005672292479953080215768746017174162243351626750431451228286731900538962983500254897693441063363428867427774443765124669939818250390803043110674505055865549636198815626701792227998218690121381345415479780466466055821972932432189540532257220979752909202341952831029082868886326745339291876703865240033347375270180211301213196542646250594306425282277246871852379327142111635064209724355968753089968523576605035974733269599928686341761523894459876941353423556034069233973155924444145483339086935886107767261659095123020961089940625582393921527055797107912864808329840510467869698119859897579967095981831649225981339762781145801402698440069707282144645055805226279644215040133806493415222019652887839848399214457293785145336251470714463001596504530963135196049630867720584958020014985464200972044272498070724897359472842444082162009681975812146629583342284874045431713122483937553255791241275149746954381094877606797059792848468809129629313351193358246415440325204874936840851720222096624181314560633314560028929312366013395776822253376821981026699510068144536360405448317308745292068661624875335970934611451283621077714425236223557424490754189353446006944079771862143,26873856)'); a = G.1; b = G.2; c = G.5; d = G.6; e = G.9; f = G.11; g = G.15; h = G.16; i = G.17; j = G.18; k = G.19; l = G.20;
sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(9707746780383874800067990993893892924005672292479953080215768746017174162243351626750431451228286731900538962983500254897693441063363428867427774443765124669939818250390803043110674505055865549636198815626701792227998218690121381345415479780466466055821972932432189540532257220979752909202341952831029082868886326745339291876703865240033347375270180211301213196542646250594306425282277246871852379327142111635064209724355968753089968523576605035974733269599928686341761523894459876941353423556034069233973155924444145483339086935886107767261659095123020961089940625582393921527055797107912864808329840510467869698119859897579967095981831649225981339762781145801402698440069707282144645055805226279644215040133806493415222019652887839848399214457293785145336251470714463001596504530963135196049630867720584958020014985464200972044272498070724897359472842444082162009681975812146629583342284874045431713122483937553255791241275149746954381094877606797059792848468809129629313351193358246415440325204874936840851720222096624181314560633314560028929312366013395776822253376821981026699510068144536360405448317308745292068661624875335970934611451283621077714425236223557424490754189353446006944079771862143,26873856)'); a = G.1; b = G.2; c = G.5; d = G.6; e = G.9; f = G.11; g = G.15; h = G.16; i = G.17; j = G.18; k = G.19; l = G.20;
|
Permutation group: | Degree $36$
$\langle(1,28,21,17,2,29,24,15,5,36,22,13,4,35,19,18)(3,30,27,10,8,31,23,14,6,34,25,11,7,33,20,16) \!\cdots\! \rangle$
|
magma:G := PermutationGroup< 36 | (1,28,21,17,2,29,24,15,5,36,22,13,4,35,19,18)(3,30,27,10,8,31,23,14,6,34,25,11,7,33,20,16)(9,32,26,12), (1,9,8,3)(2,5,7,4)(10,29,15,35,13,30,11,33)(12,34,17,32,14,31,18,36)(16,28)(19,20,22,24)(21,27,23,26), (1,6,8)(2,4,9)(3,5,7)(10,35,12,29,11,32)(13,36,15,30,14,33)(16,34,18,28,17,31)(19,24,26)(20,22,27)(21,23,25), (1,20)(2,24)(3,25)(4,22)(5,26)(6,21)(7,27)(8,19)(9,23)(10,17)(11,18)(12,16)(28,31,30,33,29,32)(34,35,36) >;
gap:G := Group( (1,28,21,17,2,29,24,15,5,36,22,13,4,35,19,18)(3,30,27,10,8,31,23,14,6,34,25,11,7,33,20,16)(9,32,26,12), (1,9,8,3)(2,5,7,4)(10,29,15,35,13,30,11,33)(12,34,17,32,14,31,18,36)(16,28)(19,20,22,24)(21,27,23,26), (1,6,8)(2,4,9)(3,5,7)(10,35,12,29,11,32)(13,36,15,30,14,33)(16,34,18,28,17,31)(19,24,26)(20,22,27)(21,23,25), (1,20)(2,24)(3,25)(4,22)(5,26)(6,21)(7,27)(8,19)(9,23)(10,17)(11,18)(12,16)(28,31,30,33,29,32)(34,35,36) );
sage:G = PermutationGroup(['(1,28,21,17,2,29,24,15,5,36,22,13,4,35,19,18)(3,30,27,10,8,31,23,14,6,34,25,11,7,33,20,16)(9,32,26,12)', '(1,9,8,3)(2,5,7,4)(10,29,15,35,13,30,11,33)(12,34,17,32,14,31,18,36)(16,28)(19,20,22,24)(21,27,23,26)', '(1,6,8)(2,4,9)(3,5,7)(10,35,12,29,11,32)(13,36,15,30,14,33)(16,34,18,28,17,31)(19,24,26)(20,22,27)(21,23,25)', '(1,20)(2,24)(3,25)(4,22)(5,26)(6,21)(7,27)(8,19)(9,23)(10,17)(11,18)(12,16)(28,31,30,33,29,32)(34,35,36)'])
|
Transitive group: |
36T69271 |
|
|
|
more information |
Direct product: |
not isomorphic to a non-trivial direct product |
Semidirect product: |
not computed |
Trans. wreath product: |
not isomorphic to a non-trivial transitive wreath product |
Possibly split product: |
$(C_3^8:C_8.D_8:Q_8)$ . $C_2^2$ |
$(C_3^8:C_2^3)$ . $(D_4^2:D_4)$ |
$(C_3^8:C_8.C_8:D_8)$ . $C_2^2$ |
$(C_3^8.C_8)$ . $(D_4^2:C_2^3)$ |
all 70 |
Elements of the group are displayed as permutations of degree 36.
The $234 \times 234$ character table is not available for this group.
The $211 \times 211$ rational character table is not available for this group.