Properties

Label 26873856.sw
Order \( 2^{12} \cdot 3^{8} \)
Exponent \( 2^{4} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{4} \)
$\card{Z(G)}$ \( 1 \)
$\card{\Aut(G)}$ \( 2^{14} \cdot 3^{8} \)
$\card{\mathrm{Out}(G)}$ \( 2^{2} \)
Perm deg. $36$
Trans deg. $36$
Rank $4$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,28,21,17,2,29,24,15,5,36,22,13,4,35,19,18)(3,30,27,10,8,31,23,14,6,34,25,11,7,33,20,16)(9,32,26,12), (1,9,8,3)(2,5,7,4)(10,29,15,35,13,30,11,33)(12,34,17,32,14,31,18,36)(16,28)(19,20,22,24)(21,27,23,26), (1,6,8)(2,4,9)(3,5,7)(10,35,12,29,11,32)(13,36,15,30,14,33)(16,34,18,28,17,31)(19,24,26)(20,22,27)(21,23,25), (1,20)(2,24)(3,25)(4,22)(5,26)(6,21)(7,27)(8,19)(9,23)(10,17)(11,18)(12,16)(28,31,30,33,29,32)(34,35,36) >;
 
Copy content gap:G := Group( (1,28,21,17,2,29,24,15,5,36,22,13,4,35,19,18)(3,30,27,10,8,31,23,14,6,34,25,11,7,33,20,16)(9,32,26,12), (1,9,8,3)(2,5,7,4)(10,29,15,35,13,30,11,33)(12,34,17,32,14,31,18,36)(16,28)(19,20,22,24)(21,27,23,26), (1,6,8)(2,4,9)(3,5,7)(10,35,12,29,11,32)(13,36,15,30,14,33)(16,34,18,28,17,31)(19,24,26)(20,22,27)(21,23,25), (1,20)(2,24)(3,25)(4,22)(5,26)(6,21)(7,27)(8,19)(9,23)(10,17)(11,18)(12,16)(28,31,30,33,29,32)(34,35,36) );
 
Copy content sage:G = PermutationGroup(['(1,28,21,17,2,29,24,15,5,36,22,13,4,35,19,18)(3,30,27,10,8,31,23,14,6,34,25,11,7,33,20,16)(9,32,26,12)', '(1,9,8,3)(2,5,7,4)(10,29,15,35,13,30,11,33)(12,34,17,32,14,31,18,36)(16,28)(19,20,22,24)(21,27,23,26)', '(1,6,8)(2,4,9)(3,5,7)(10,35,12,29,11,32)(13,36,15,30,14,33)(16,34,18,28,17,31)(19,24,26)(20,22,27)(21,23,25)', '(1,20)(2,24)(3,25)(4,22)(5,26)(6,21)(7,27)(8,19)(9,23)(10,17)(11,18)(12,16)(28,31,30,33,29,32)(34,35,36)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(9707746780383874800067990993893892924005672292479953080215768746017174162243351626750431451228286731900538962983500254897693441063363428867427774443765124669939818250390803043110674505055865549636198815626701792227998218690121381345415479780466466055821972932432189540532257220979752909202341952831029082868886326745339291876703865240033347375270180211301213196542646250594306425282277246871852379327142111635064209724355968753089968523576605035974733269599928686341761523894459876941353423556034069233973155924444145483339086935886107767261659095123020961089940625582393921527055797107912864808329840510467869698119859897579967095981831649225981339762781145801402698440069707282144645055805226279644215040133806493415222019652887839848399214457293785145336251470714463001596504530963135196049630867720584958020014985464200972044272498070724897359472842444082162009681975812146629583342284874045431713122483937553255791241275149746954381094877606797059792848468809129629313351193358246415440325204874936840851720222096624181314560633314560028929312366013395776822253376821981026699510068144536360405448317308745292068661624875335970934611451283621077714425236223557424490754189353446006944079771862143,26873856)'); a = G.1; b = G.2; c = G.5; d = G.6; e = G.9; f = G.11; g = G.15; h = G.16; i = G.17; j = G.18; k = G.19; l = G.20;
 

Group information

Description:$C_3^8:C_2^3.D_4^2:D_4$
Order: \(26873856\)\(\medspace = 2^{12} \cdot 3^{8} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_3^8.C_2.C_4^3.C_2^5.C_2^2$, of order \(107495424\)\(\medspace = 2^{14} \cdot 3^{8} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 12, $C_3$ x 8
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 12 16 24
Elements 1 35703 6560 2074248 1584864 10492416 3017088 6718464 2944512 26873856
Conjugacy classes   1 14 11 31 61 60 24 12 20 234
Divisions 1 14 11 31 61 46 24 6 17 211
Autjugacy classes 1 10 7 22 30 43 15 6 13 147

Minimal presentations

Permutation degree:$36$
Transitive degree:$36$
Rank: $4$
Inequivalent generating quadruples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 32 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l \mid d^{8}=e^{6}=f^{24}=g^{3}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([20, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 336037120, 607403761, 101, 837216722, 162, 172124803, 375103, 1347694404, 1199014424, 7530044, 249293064, 127718484, 1121790725, 144758425, 174388845, 187461665, 188776165, 345, 1239642886, 387515546, 851170926, 142142626, 31240806, 406, 3936276487, 335267867, 677360687, 361044547, 143904087, 969477128, 84051388, 611907888, 414472388, 225622168, 69697548, 44116688, 1948, 528, 1427865609, 2082816029, 1328384049, 248243269, 187558489, 143238509, 68200129, 1749, 3980472330, 1867525470, 646722610, 701226310, 119644890, 93952430, 44739330, 1502310, 6915650, 1949170, 650, 3110830091, 2542533151, 1417666611, 445040711, 1705051, 137525871, 85033091, 8807191, 400491, 70751, 711, 6864332812, 1814042912, 802347572, 813296712, 142072412, 73033072, 54989092, 436952, 156172, 358992, 772, 2759680013, 588349473, 1692006453, 536309833, 164398193, 79085573, 53913, 265420814, 2296627234, 624844854, 15206474, 8294514, 19699334, 172954, 173014, 410634, 3854, 2724986895, 3401400355, 73728055, 194641995, 4792435, 43131015, 553115, 1198255, 100055, 898795, 11775, 1629388816, 2088996, 357212216, 15667276, 92436596, 23696776, 1762716, 1925976, 493916, 36976, 2251653137, 4184985637, 555217977, 540288077, 159529057, 206259957, 137966537, 5598877, 7309617, 1417177, 721677, 304817, 929218578, 4781603878, 296606778, 904144718, 147671138, 107117558, 67786058, 17729438, 5691058, 830138, 355918, 191778, 6512640019, 2794393639, 1276723259, 390169679, 304742499, 278790519, 38172939, 55987359, 15321779, 3485019, 1281839, 638659]); a,b,c,d,e,f,g,h,i,j,k,l := Explode([G.1, G.2, G.5, G.6, G.9, G.11, G.15, G.16, G.17, G.18, G.19, G.20]); AssignNames(~G, ["a", "b", "b2", "b4", "c", "d", "d2", "d4", "e", "e2", "f", "f2", "f4", "f8", "g", "h", "i", "j", "k", "l"]);
 
Copy content gap:G := PcGroupCode(9707746780383874800067990993893892924005672292479953080215768746017174162243351626750431451228286731900538962983500254897693441063363428867427774443765124669939818250390803043110674505055865549636198815626701792227998218690121381345415479780466466055821972932432189540532257220979752909202341952831029082868886326745339291876703865240033347375270180211301213196542646250594306425282277246871852379327142111635064209724355968753089968523576605035974733269599928686341761523894459876941353423556034069233973155924444145483339086935886107767261659095123020961089940625582393921527055797107912864808329840510467869698119859897579967095981831649225981339762781145801402698440069707282144645055805226279644215040133806493415222019652887839848399214457293785145336251470714463001596504530963135196049630867720584958020014985464200972044272498070724897359472842444082162009681975812146629583342284874045431713122483937553255791241275149746954381094877606797059792848468809129629313351193358246415440325204874936840851720222096624181314560633314560028929312366013395776822253376821981026699510068144536360405448317308745292068661624875335970934611451283621077714425236223557424490754189353446006944079771862143,26873856); a := G.1; b := G.2; c := G.5; d := G.6; e := G.9; f := G.11; g := G.15; h := G.16; i := G.17; j := G.18; k := G.19; l := G.20;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(9707746780383874800067990993893892924005672292479953080215768746017174162243351626750431451228286731900538962983500254897693441063363428867427774443765124669939818250390803043110674505055865549636198815626701792227998218690121381345415479780466466055821972932432189540532257220979752909202341952831029082868886326745339291876703865240033347375270180211301213196542646250594306425282277246871852379327142111635064209724355968753089968523576605035974733269599928686341761523894459876941353423556034069233973155924444145483339086935886107767261659095123020961089940625582393921527055797107912864808329840510467869698119859897579967095981831649225981339762781145801402698440069707282144645055805226279644215040133806493415222019652887839848399214457293785145336251470714463001596504530963135196049630867720584958020014985464200972044272498070724897359472842444082162009681975812146629583342284874045431713122483937553255791241275149746954381094877606797059792848468809129629313351193358246415440325204874936840851720222096624181314560633314560028929312366013395776822253376821981026699510068144536360405448317308745292068661624875335970934611451283621077714425236223557424490754189353446006944079771862143,26873856)'); a = G.1; b = G.2; c = G.5; d = G.6; e = G.9; f = G.11; g = G.15; h = G.16; i = G.17; j = G.18; k = G.19; l = G.20;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(9707746780383874800067990993893892924005672292479953080215768746017174162243351626750431451228286731900538962983500254897693441063363428867427774443765124669939818250390803043110674505055865549636198815626701792227998218690121381345415479780466466055821972932432189540532257220979752909202341952831029082868886326745339291876703865240033347375270180211301213196542646250594306425282277246871852379327142111635064209724355968753089968523576605035974733269599928686341761523894459876941353423556034069233973155924444145483339086935886107767261659095123020961089940625582393921527055797107912864808329840510467869698119859897579967095981831649225981339762781145801402698440069707282144645055805226279644215040133806493415222019652887839848399214457293785145336251470714463001596504530963135196049630867720584958020014985464200972044272498070724897359472842444082162009681975812146629583342284874045431713122483937553255791241275149746954381094877606797059792848468809129629313351193358246415440325204874936840851720222096624181314560633314560028929312366013395776822253376821981026699510068144536360405448317308745292068661624875335970934611451283621077714425236223557424490754189353446006944079771862143,26873856)'); a = G.1; b = G.2; c = G.5; d = G.6; e = G.9; f = G.11; g = G.15; h = G.16; i = G.17; j = G.18; k = G.19; l = G.20;
 
Permutation group:Degree $36$ $\langle(1,28,21,17,2,29,24,15,5,36,22,13,4,35,19,18)(3,30,27,10,8,31,23,14,6,34,25,11,7,33,20,16) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,28,21,17,2,29,24,15,5,36,22,13,4,35,19,18)(3,30,27,10,8,31,23,14,6,34,25,11,7,33,20,16)(9,32,26,12), (1,9,8,3)(2,5,7,4)(10,29,15,35,13,30,11,33)(12,34,17,32,14,31,18,36)(16,28)(19,20,22,24)(21,27,23,26), (1,6,8)(2,4,9)(3,5,7)(10,35,12,29,11,32)(13,36,15,30,14,33)(16,34,18,28,17,31)(19,24,26)(20,22,27)(21,23,25), (1,20)(2,24)(3,25)(4,22)(5,26)(6,21)(7,27)(8,19)(9,23)(10,17)(11,18)(12,16)(28,31,30,33,29,32)(34,35,36) >;
 
Copy content gap:G := Group( (1,28,21,17,2,29,24,15,5,36,22,13,4,35,19,18)(3,30,27,10,8,31,23,14,6,34,25,11,7,33,20,16)(9,32,26,12), (1,9,8,3)(2,5,7,4)(10,29,15,35,13,30,11,33)(12,34,17,32,14,31,18,36)(16,28)(19,20,22,24)(21,27,23,26), (1,6,8)(2,4,9)(3,5,7)(10,35,12,29,11,32)(13,36,15,30,14,33)(16,34,18,28,17,31)(19,24,26)(20,22,27)(21,23,25), (1,20)(2,24)(3,25)(4,22)(5,26)(6,21)(7,27)(8,19)(9,23)(10,17)(11,18)(12,16)(28,31,30,33,29,32)(34,35,36) );
 
Copy content sage:G = PermutationGroup(['(1,28,21,17,2,29,24,15,5,36,22,13,4,35,19,18)(3,30,27,10,8,31,23,14,6,34,25,11,7,33,20,16)(9,32,26,12)', '(1,9,8,3)(2,5,7,4)(10,29,15,35,13,30,11,33)(12,34,17,32,14,31,18,36)(16,28)(19,20,22,24)(21,27,23,26)', '(1,6,8)(2,4,9)(3,5,7)(10,35,12,29,11,32)(13,36,15,30,14,33)(16,34,18,28,17,31)(19,24,26)(20,22,27)(21,23,25)', '(1,20)(2,24)(3,25)(4,22)(5,26)(6,21)(7,27)(8,19)(9,23)(10,17)(11,18)(12,16)(28,31,30,33,29,32)(34,35,36)'])
 
Transitive group: 36T69271 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_3^8:C_8.D_8:Q_8)$ . $C_2^2$ $(C_3^8:C_2^3)$ . $(D_4^2:D_4)$ $(C_3^8:C_8.C_8:D_8)$ . $C_2^2$ $(C_3^8.C_8)$ . $(D_4^2:C_2^3)$ all 70

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2}^{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{7}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 242 normal subgroups (96 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_1$ $G/Z \simeq$ $C_3^8:C_2^3.D_4^2:D_4$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_3^8.C_4^3.C_2^2$ $G/G' \simeq$ $C_2^4$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_1$ $G/\Phi \simeq$ $C_3^8:C_2^3.D_4^2:D_4$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_3^8$ $G/\operatorname{Fit} \simeq$ $(C_2\times C_4^2).C_2^5.C_2^2$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_3^8:C_2^3.D_4^2:D_4$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_3^8$ $G/\operatorname{soc} \simeq$ $(C_2\times C_4^2).C_2^5.C_2^2$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_4^3.C_2^5.C_2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^8$

Subgroup diagram and profile

Series

Derived series $C_3^8:C_2^3.D_4^2:D_4$ $\rhd$ $C_3^8.C_4^3.C_2^2$ $\rhd$ $C_3^8:(C_2\times C_4)$ $\rhd$ $C_3^8$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_3^8:C_2^3.D_4^2:D_4$ $\rhd$ $C_3^8.C_2^3.C_2^4.C_2^4$ $\rhd$ $C_3^8.C_2^3.C_2^4.C_2^3$ $\rhd$ $C_3^8.C_4^3.C_2^3$ $\rhd$ $C_3^8.C_4^3.C_2^2$ $\rhd$ $C_3^8.C_4^3.C_2$ $\rhd$ $C_3^8.C_4^3$ $\rhd$ $C_3^8.C_2^3.C_2^2$ $\rhd$ $C_3^8:(C_2^2\times C_4)$ $\rhd$ $C_3^8:(C_2\times C_4)$ $\rhd$ $C_3^7.D_6$ $\rhd$ $C_3^8.C_2$ $\rhd$ $C_3^8$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_3^8:C_2^3.D_4^2:D_4$ $\rhd$ $C_3^8.C_4^3.C_2^2$ $\rhd$ $C_3^8.C_2^3.C_2^2$ $\rhd$ $C_3^8:(C_2\times C_4)$ $\rhd$ $C_3^7.D_6$ $\rhd$ $C_3^8.C_2$ $\rhd$ $C_3^8$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 3 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $234 \times 234$ character table is not available for this group.

Rational character table

The $211 \times 211$ rational character table is not available for this group.