Properties

Label 2654208.dt
Order \( 2^{15} \cdot 3^{4} \)
Exponent \( 2^{3} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{4} \)
$\card{Z(G)}$ \( 2 \)
$\card{\Aut(G)}$ \( 2^{18} \cdot 3^{4} \)
$\card{\mathrm{Out}(G)}$ \( 2^{4} \)
Perm deg. not computed
Trans deg. $24$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 24 | (1,23,16,10,5,21,14,7,3,20,18,11)(2,24,15,9,6,22,13,8,4,19,17,12), (1,15)(2,16)(3,18)(4,17)(5,14)(6,13)(9,12)(10,11)(21,24)(22,23), (1,22,17,11,4,23,13,10,5,20,15,8)(2,21,18,12,3,24,14,9,6,19,16,7) >;
 
Copy content gap:G := Group( (1,23,16,10,5,21,14,7,3,20,18,11)(2,24,15,9,6,22,13,8,4,19,17,12), (1,15)(2,16)(3,18)(4,17)(5,14)(6,13)(9,12)(10,11)(21,24)(22,23), (1,22,17,11,4,23,13,10,5,20,15,8)(2,21,18,12,3,24,14,9,6,19,16,7) );
 
Copy content sage:G = PermutationGroup(['(1,23,16,10,5,21,14,7,3,20,18,11)(2,24,15,9,6,22,13,8,4,19,17,12)', '(1,15)(2,16)(3,18)(4,17)(5,14)(6,13)(9,12)(10,11)(21,24)(22,23)', '(1,22,17,11,4,23,13,10,5,20,15,8)(2,21,18,12,3,24,14,9,6,19,16,7)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(4245127002800407594524478687841688095073903055678611887116537164207281605308900450059656737031552499375811377484551529044271800660532549210194201176759183277776615460050132610099240371878773088841487612163829996697288474645160313102121308999729065950507606763985803244061593629315903603389979891085322895584472638736785539348639562430521636783942705153720903314168541483211509356538694512879924594002108236559392923690656056588307592063885712253799586467294547675411621214601873600739200524348882138886084004865907346459786609345796831180466565051994318401637280125399580975167775798466473785217214203086614165203658962079972187487069382467049799958849903025445853119595377912968098826951097369958400461632299821699394261431801673187217878516979000162346319571562572590594728548481305658342491756828247328205876965627299661851049514297119235613046077797343903684361922928876500450978769872792120964633725910268844883310402025858181368062418098678085914209541426496,2654208)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.7; f = G.9; g = G.10; h = G.12; i = G.14; j = G.15; k = G.16; l = G.17; m = G.18; n = G.19;
 

Group information

Description:$C_2^8.S_3^4:(C_2\times C_4)$
Order: \(2654208\)\(\medspace = 2^{15} \cdot 3^{4} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_2^8.C_3^4.C_2.C_2^6.C_2^3$, of order \(21233664\)\(\medspace = 2^{18} \cdot 3^{4} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 15, $C_3$ x 4
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 12 24
Elements 1 16159 6560 405216 332384 594432 1188864 110592 2654208
Conjugacy classes   1 37 6 90 70 24 64 4 296
Divisions 1 37 6 80 70 18 56 4 272
Autjugacy classes 1 28 5 51 48 9 33 2 177

Minimal presentations

Permutation degree:not computed
Transitive degree:$24$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 12 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n \mid d^{2}=e^{6}=f^{3}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([19, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 38, 32746900, 12703478, 31016343, 14995600, 81431267, 7005702, 22611409, 212, 121130324, 91565583, 15714182, 10060960, 15675461, 76026168, 30589435, 25718918, 12097989, 141516262, 106336185, 55016292, 16961819, 7955078, 8616639, 386, 94439431, 111375898, 72347181, 15131968, 11590995, 904198, 18911240, 2134107, 96925582, 20169857, 1998732, 4207, 3603434, 1999815, 207619849, 17182108, 104843567, 21532386, 2736085, 34304, 2807943, 278872, 93071, 560, 439348106, 3130013, 7463856, 20284771, 8186198, 30201, 2362660, 393371147, 157987614, 116487985, 21242372, 12016599, 10440682, 7645877, 2634912, 905095, 676, 5216652, 80241439, 8678642, 24044037, 18993400, 5655419, 5015214, 1467325, 359444749, 93768224, 49642035, 4136902, 9652697, 4826412, 2930383, 1206722, 143824, 67235, 24162, 11413, 425502734, 183202593, 56142772, 19206791, 22900410, 11450269, 5540528, 2585667, 123305, 66894, 51523, 24182, 151289871, 3151906, 115306037, 788040, 459739, 14413358, 98625, 3160228, 1182119, 167443216, 90419363, 129210390, 47721385, 25604948, 24523563, 6174598, 5346122, 1395528, 104839, 35090, 52551, 22531, 460961297, 212751396, 99284023, 3545930, 11524125, 5762128, 6870227, 1440654, 369548, 191043, 59734, 13583, 284456466, 270108901, 2183384, 60821355, 30020854, 234041, 8441034, 3801481, 156122]); a,b,c,d,e,f,g,h,i,j,k,l,m,n := Explode([G.1, G.3, G.4, G.6, G.7, G.9, G.10, G.12, G.14, G.15, G.16, G.17, G.18, G.19]); AssignNames(~G, ["a", "a2", "b", "c", "c2", "d", "e", "e2", "f", "g", "g2", "h", "h2", "i", "j", "k", "l", "m", "n"]);
 
Copy content gap:G := PcGroupCode(4245127002800407594524478687841688095073903055678611887116537164207281605308900450059656737031552499375811377484551529044271800660532549210194201176759183277776615460050132610099240371878773088841487612163829996697288474645160313102121308999729065950507606763985803244061593629315903603389979891085322895584472638736785539348639562430521636783942705153720903314168541483211509356538694512879924594002108236559392923690656056588307592063885712253799586467294547675411621214601873600739200524348882138886084004865907346459786609345796831180466565051994318401637280125399580975167775798466473785217214203086614165203658962079972187487069382467049799958849903025445853119595377912968098826951097369958400461632299821699394261431801673187217878516979000162346319571562572590594728548481305658342491756828247328205876965627299661851049514297119235613046077797343903684361922928876500450978769872792120964633725910268844883310402025858181368062418098678085914209541426496,2654208); a := G.1; b := G.3; c := G.4; d := G.6; e := G.7; f := G.9; g := G.10; h := G.12; i := G.14; j := G.15; k := G.16; l := G.17; m := G.18; n := G.19;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(4245127002800407594524478687841688095073903055678611887116537164207281605308900450059656737031552499375811377484551529044271800660532549210194201176759183277776615460050132610099240371878773088841487612163829996697288474645160313102121308999729065950507606763985803244061593629315903603389979891085322895584472638736785539348639562430521636783942705153720903314168541483211509356538694512879924594002108236559392923690656056588307592063885712253799586467294547675411621214601873600739200524348882138886084004865907346459786609345796831180466565051994318401637280125399580975167775798466473785217214203086614165203658962079972187487069382467049799958849903025445853119595377912968098826951097369958400461632299821699394261431801673187217878516979000162346319571562572590594728548481305658342491756828247328205876965627299661851049514297119235613046077797343903684361922928876500450978769872792120964633725910268844883310402025858181368062418098678085914209541426496,2654208)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.7; f = G.9; g = G.10; h = G.12; i = G.14; j = G.15; k = G.16; l = G.17; m = G.18; n = G.19;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(4245127002800407594524478687841688095073903055678611887116537164207281605308900450059656737031552499375811377484551529044271800660532549210194201176759183277776615460050132610099240371878773088841487612163829996697288474645160313102121308999729065950507606763985803244061593629315903603389979891085322895584472638736785539348639562430521636783942705153720903314168541483211509356538694512879924594002108236559392923690656056588307592063885712253799586467294547675411621214601873600739200524348882138886084004865907346459786609345796831180466565051994318401637280125399580975167775798466473785217214203086614165203658962079972187487069382467049799958849903025445853119595377912968098826951097369958400461632299821699394261431801673187217878516979000162346319571562572590594728548481305658342491756828247328205876965627299661851049514297119235613046077797343903684361922928876500450978769872792120964633725910268844883310402025858181368062418098678085914209541426496,2654208)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.7; f = G.9; g = G.10; h = G.12; i = G.14; j = G.15; k = G.16; l = G.17; m = G.18; n = G.19;
 
Permutation group:Degree $24$ $\langle(1,23,16,10,5,21,14,7,3,20,18,11)(2,24,15,9,6,22,13,8,4,19,17,12), (1,15) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 24 | (1,23,16,10,5,21,14,7,3,20,18,11)(2,24,15,9,6,22,13,8,4,19,17,12), (1,15)(2,16)(3,18)(4,17)(5,14)(6,13)(9,12)(10,11)(21,24)(22,23), (1,22,17,11,4,23,13,10,5,20,15,8)(2,21,18,12,3,24,14,9,6,19,16,7) >;
 
Copy content gap:G := Group( (1,23,16,10,5,21,14,7,3,20,18,11)(2,24,15,9,6,22,13,8,4,19,17,12), (1,15)(2,16)(3,18)(4,17)(5,14)(6,13)(9,12)(10,11)(21,24)(22,23), (1,22,17,11,4,23,13,10,5,20,15,8)(2,21,18,12,3,24,14,9,6,19,16,7) );
 
Copy content sage:G = PermutationGroup(['(1,23,16,10,5,21,14,7,3,20,18,11)(2,24,15,9,6,22,13,8,4,19,17,12)', '(1,15)(2,16)(3,18)(4,17)(5,14)(6,13)(9,12)(10,11)(21,24)(22,23)', '(1,22,17,11,4,23,13,10,5,20,15,8)(2,21,18,12,3,24,14,9,6,19,16,7)'])
 
Transitive group: 24T22691 24T22692 36T46723 36T46726 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_2^9.C_3:S_3^3)$ . $D_4$ $(A_4^2.S_4^2:C_2^2)$ . $D_4$ $C_2^8$ . $(S_3^4:(C_2\times C_4))$ $(C_2^8.C_3^4.C_2^4)$ . $D_4$ all 36

Elements of the group are displayed as permutations of degree 24.

Homology

Abelianization: $C_{2}^{2} \times C_{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{6}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 60 normal subgroups (24 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_2$ $G/Z \simeq$ $C_2^8.C_3^4.C_2\wr C_2^2$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $A_4^2\wr C_2.C_2^2$ $G/G' \simeq$ $C_2^2\times C_4$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_2$ $G/\Phi \simeq$ $C_2^8.C_3^4.C_2\wr C_2^2$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_2^9$ $G/\operatorname{Fit} \simeq$ $C_3^4.C_2\wr C_2^2$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_2^8.S_3^4:(C_2\times C_4)$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_2^9$ $G/\operatorname{soc} \simeq$ $C_3^4.C_2\wr C_2^2$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^7.C_2^4.C_2^4$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^4$

Subgroup diagram and profile

Series

Derived series $C_2^8.S_3^4:(C_2\times C_4)$ $\rhd$ $A_4^2\wr C_2.C_2^2$ $\rhd$ $C_2^8.C_3^4$ $\rhd$ $C_2^8$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_2^8.S_3^4:(C_2\times C_4)$ $\rhd$ $C_2^8.C_3^4.C_2^4.C_2^2$ $\rhd$ $A_4^2.S_4^2:C_2^3$ $\rhd$ $A_4^2\wr C_2.C_2^3$ $\rhd$ $A_4^2\wr C_2.C_2^2$ $\rhd$ $C_2^8.C_3^3.D_6$ $\rhd$ $C_2^8.C_3^4.C_2$ $\rhd$ $C_2^8.C_3^4$ $\rhd$ $C_2^8$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_2^8.S_3^4:(C_2\times C_4)$ $\rhd$ $A_4^2\wr C_2.C_2^2$ $\rhd$ $C_2^8.C_3^4.C_2$ $\rhd$ $C_2^8.C_3^4$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_2$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 5 larger groups in the database.

This group is a maximal quotient of 3 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $296 \times 296$ character table is not available for this group.

Rational character table

The $272 \times 272$ rational character table is not available for this group.