Properties

Label 2654208.cn
Order \( 2^{15} \cdot 3^{4} \)
Exponent \( 2^{3} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{4} \)
$\card{Z(G)}$ \( 2 \)
$\card{\Aut(G)}$ \( 2^{18} \cdot 3^{4} \)
$\card{\mathrm{Out}(G)}$ \( 2^{4} \)
Perm deg. $24$
Trans deg. $24$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 24 | (1,12,6,7)(2,11,5,8)(3,9,4,10)(13,17,21,14,18,22)(19,23,20,24), (1,15,7,22,5,19,3,17,9,23,11,13,2,16,8,21,6,20,4,18,10,24,12,14), (3,12)(4,11)(13,20,22,24,14,19,21,23)(15,18)(16,17) >;
 
Copy content gap:G := Group( (1,12,6,7)(2,11,5,8)(3,9,4,10)(13,17,21,14,18,22)(19,23,20,24), (1,15,7,22,5,19,3,17,9,23,11,13,2,16,8,21,6,20,4,18,10,24,12,14), (3,12)(4,11)(13,20,22,24,14,19,21,23)(15,18)(16,17) );
 
Copy content sage:G = PermutationGroup(['(1,12,6,7)(2,11,5,8)(3,9,4,10)(13,17,21,14,18,22)(19,23,20,24)', '(1,15,7,22,5,19,3,17,9,23,11,13,2,16,8,21,6,20,4,18,10,24,12,14)', '(3,12)(4,11)(13,20,22,24,14,19,21,23)(15,18)(16,17)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1401161215368586564284144314001148960788790421744465211927679761956621836036455596854709392706888950556766646660932720057244864785456543442459363596472484331941739481523619339647621233310835925227779839719112511983084651164455357299143485287263057315792395230646764604072014688500131512517058894925966841269782572671801652901784255735198935034053652273481218333268900418071993650737326094639376498550329364438005506132720831788893015122203797473305438328146078754524777495707356388518369037798124166671603629541356940499902276547178596979541913836955094661250849521020812124138367326293667321857752185717722841152866843978720015782238122372963442375607466980675382615410937542600869703971604178492170033875085103994984734213038057804810830634008198407563951212293381561699835021286394719359224945761632817645010161037876481923911877986560646063387757612492320011244278308272592596351818663445005069143593964359930554285095780881728,2654208)'); a = G.1; b = G.3; c = G.5; d = G.8; e = G.10; f = G.12; g = G.14; h = G.15; i = G.16; j = G.17; k = G.18; l = G.19;
 

Group information

Description:$C_2^9.C_6:S_3^3:C_4$
Order: \(2654208\)\(\medspace = 2^{15} \cdot 3^{4} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_2^8.C_3^4.C_2^6.C_2^4$, of order \(21233664\)\(\medspace = 2^{18} \cdot 3^{4} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 15, $C_3$ x 4
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 12 24
Elements 1 11967 6560 357696 204384 580608 829440 663552 2654208
Conjugacy classes   1 36 6 101 69 44 67 20 344
Divisions 1 36 6 77 69 24 49 10 272
Autjugacy classes 1 30 6 56 53 10 36 3 195

Minimal presentations

Permutation degree:$24$
Transitive degree:$24$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 12 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l \mid c^{12}=d^{6}=e^{6}=f^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([19, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 38, 459668, 64982, 41149803, 154, 175668835, 100276550, 16186236, 118753804, 101527663, 9660022, 27479571, 270, 63748805, 80644536, 50270395, 4779398, 328, 48058758, 101054489, 41449228, 33843775, 304963079, 194000666, 60526445, 22935040, 8326643, 5828694, 1880209, 444, 210792392, 154802907, 71267374, 10727921, 9377724, 3991243, 1617098, 474094089, 58173487, 48317826, 23447605, 1238144, 4569243, 866542, 842051, 560, 176242186, 84813920, 8788099, 28200038, 8682801, 549376, 2711291, 452856, 567599627, 26309425, 61264580, 35704887, 2117770, 5860637, 156096, 90451, 165710, 247125, 676, 410312460, 111565010, 41828037, 26035864, 2667707, 9016614, 358827, 90604, 38610445, 5975456, 55157811, 114982, 344825, 28836, 186859, 62390, 2559, 29548814, 15266913, 165473332, 4555511, 1108170, 215569, 477218, 97617, 110461, 706019343, 6566453, 22063195, 12607598, 7091841, 2101396, 1182119, 394170, 175309, 22112, 7539, 8372214, 20093257, 46884188, 20093295, 11721154, 3349013, 1953672, 651355, 279278, 7977, 11872, 7091767, 99284042, 3545949, 12410608, 2659523, 2068566, 443401, 147932, 172575, 98722, 33077, 419198994, 13411928, 67371339, 11228638, 16842929, 935844, 2807287, 156122, 52173, 234136, 34883, 52230]); a,b,c,d,e,f,g,h,i,j,k,l := Explode([G.1, G.3, G.5, G.8, G.10, G.12, G.14, G.15, G.16, G.17, G.18, G.19]); AssignNames(~G, ["a", "a2", "b", "b2", "c", "c2", "c4", "d", "d2", "e", "e2", "f", "f2", "g", "h", "i", "j", "k", "l"]);
 
Copy content gap:G := PcGroupCode(1401161215368586564284144314001148960788790421744465211927679761956621836036455596854709392706888950556766646660932720057244864785456543442459363596472484331941739481523619339647621233310835925227779839719112511983084651164455357299143485287263057315792395230646764604072014688500131512517058894925966841269782572671801652901784255735198935034053652273481218333268900418071993650737326094639376498550329364438005506132720831788893015122203797473305438328146078754524777495707356388518369037798124166671603629541356940499902276547178596979541913836955094661250849521020812124138367326293667321857752185717722841152866843978720015782238122372963442375607466980675382615410937542600869703971604178492170033875085103994984734213038057804810830634008198407563951212293381561699835021286394719359224945761632817645010161037876481923911877986560646063387757612492320011244278308272592596351818663445005069143593964359930554285095780881728,2654208); a := G.1; b := G.3; c := G.5; d := G.8; e := G.10; f := G.12; g := G.14; h := G.15; i := G.16; j := G.17; k := G.18; l := G.19;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1401161215368586564284144314001148960788790421744465211927679761956621836036455596854709392706888950556766646660932720057244864785456543442459363596472484331941739481523619339647621233310835925227779839719112511983084651164455357299143485287263057315792395230646764604072014688500131512517058894925966841269782572671801652901784255735198935034053652273481218333268900418071993650737326094639376498550329364438005506132720831788893015122203797473305438328146078754524777495707356388518369037798124166671603629541356940499902276547178596979541913836955094661250849521020812124138367326293667321857752185717722841152866843978720015782238122372963442375607466980675382615410937542600869703971604178492170033875085103994984734213038057804810830634008198407563951212293381561699835021286394719359224945761632817645010161037876481923911877986560646063387757612492320011244278308272592596351818663445005069143593964359930554285095780881728,2654208)'); a = G.1; b = G.3; c = G.5; d = G.8; e = G.10; f = G.12; g = G.14; h = G.15; i = G.16; j = G.17; k = G.18; l = G.19;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1401161215368586564284144314001148960788790421744465211927679761956621836036455596854709392706888950556766646660932720057244864785456543442459363596472484331941739481523619339647621233310835925227779839719112511983084651164455357299143485287263057315792395230646764604072014688500131512517058894925966841269782572671801652901784255735198935034053652273481218333268900418071993650737326094639376498550329364438005506132720831788893015122203797473305438328146078754524777495707356388518369037798124166671603629541356940499902276547178596979541913836955094661250849521020812124138367326293667321857752185717722841152866843978720015782238122372963442375607466980675382615410937542600869703971604178492170033875085103994984734213038057804810830634008198407563951212293381561699835021286394719359224945761632817645010161037876481923911877986560646063387757612492320011244278308272592596351818663445005069143593964359930554285095780881728,2654208)'); a = G.1; b = G.3; c = G.5; d = G.8; e = G.10; f = G.12; g = G.14; h = G.15; i = G.16; j = G.17; k = G.18; l = G.19;
 
Permutation group:Degree $24$ $\langle(1,12,6,7)(2,11,5,8)(3,9,4,10)(13,17,21,14,18,22)(19,23,20,24), (1,15,7,22,5,19,3,17,9,23,11,13,2,16,8,21,6,20,4,18,10,24,12,14) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 24 | (1,12,6,7)(2,11,5,8)(3,9,4,10)(13,17,21,14,18,22)(19,23,20,24), (1,15,7,22,5,19,3,17,9,23,11,13,2,16,8,21,6,20,4,18,10,24,12,14), (3,12)(4,11)(13,20,22,24,14,19,21,23)(15,18)(16,17) >;
 
Copy content gap:G := Group( (1,12,6,7)(2,11,5,8)(3,9,4,10)(13,17,21,14,18,22)(19,23,20,24), (1,15,7,22,5,19,3,17,9,23,11,13,2,16,8,21,6,20,4,18,10,24,12,14), (3,12)(4,11)(13,20,22,24,14,19,21,23)(15,18)(16,17) );
 
Copy content sage:G = PermutationGroup(['(1,12,6,7)(2,11,5,8)(3,9,4,10)(13,17,21,14,18,22)(19,23,20,24)', '(1,15,7,22,5,19,3,17,9,23,11,13,2,16,8,21,6,20,4,18,10,24,12,14)', '(3,12)(4,11)(13,20,22,24,14,19,21,23)(15,18)(16,17)'])
 
Transitive group: 24T22610 24T22611 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_2^9.C_3:S_3^3)$ . $D_4$ (2) $(C_2^9.C_6:S_3^3)$ . $C_4$ $C_2^9$ . $(C_6:S_3^3:C_4)$ $C_2^{10}$ . $(C_3:S_3^3:C_4)$ all 40

Elements of the group are displayed as permutations of degree 24.

Homology

Abelianization: $C_{2}^{2} \times C_{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{4}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 54 normal subgroups (44 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_2$ $G/Z \simeq$ $A_4^2\wr C_2.D_4.C_4$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_2^9.C_3^2:S_3^2$ $G/G' \simeq$ $C_2^2\times C_4$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_2$ $G/\Phi \simeq$ $A_4^2\wr C_2.D_4.C_4$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_2^{10}$ $G/\operatorname{Fit} \simeq$ $C_3:S_3^3:C_4$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_2^9.C_6:S_3^3:C_4$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_2^9$ $G/\operatorname{soc} \simeq$ $C_6:S_3^3:C_4$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^6.C_2^5.C_2^4$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^4$

Subgroup diagram and profile

Series

Derived series $C_2^9.C_6:S_3^3:C_4$ $\rhd$ $C_2^9.C_3^2:S_3^2$ $\rhd$ $C_2^8.C_3^4$ $\rhd$ $C_2^8$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_2^9.C_6:S_3^3:C_4$ $\rhd$ $C_2^8.C_3^4.C_2^4.C_2^2$ $\rhd$ $C_2^8.C_3^4.C_2^4.C_2$ $\rhd$ $C_2^9.C_3:S_3^3$ $\rhd$ $C_2^9.C_3^2:S_3^2$ $\rhd$ $C_2^8.C_3^3.D_6$ $\rhd$ $C_2^8.C_3^4.C_2$ $\rhd$ $C_2^8.C_3^4$ $\rhd$ $C_2^8$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_2^9.C_6:S_3^3:C_4$ $\rhd$ $C_2^9.C_3^2:S_3^2$ $\rhd$ $C_2^8.C_3^3.D_6$ $\rhd$ $C_2^8.C_3^4$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_2$ $\lhd$ $C_2^2$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 6 larger groups in the database.

This group is a maximal quotient of 2 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $344 \times 344$ character table is not available for this group.

Rational character table

The $272 \times 272$ rational character table is not available for this group.