Properties

Label 264000.b
Order \( 2^{6} \cdot 3 \cdot 5^{3} \cdot 11 \)
Exponent \( 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Nilpotent no
Solvable no
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \cdot 5 \)
$\card{Z(G)}$ 10
$\card{\Aut(G)}$ \( 2^{10} \cdot 3 \cdot 5^{2} \cdot 11 \)
$\card{\mathrm{Out}(G)}$ \( 2^{5} \)
Perm deg. $58$
Trans deg. $240$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 58 | (1,2,8,28,13)(3,14,31,12,9)(4,10,30,11,35)(5,15,7,26,24)(6,22,38,39,27)(16,40,19,34,32)(18,44,41,20,43)(21,25,48,42,37)(49,50,51,54,56)(52,53,55,57,58), (49,50,51,54,56)(52,53,55,57,58), (1,3,15,31,28,6,7,27,8,29)(2,9,24,39,26,12,36,14,13,38)(4,16,43,19,11,21,18,37,30,17)(5,22)(10,32,41,42,44,34,33,40,35,48)(20,25)(23,47)(45,46)(49,51,56,50,54)(52,53,55,57,58), (1,4)(2,10)(3,16)(5,20)(6,21)(7,18)(8,30)(9,32)(11,28)(12,34)(13,35)(14,40)(15,43)(17,29)(19,31)(22,25)(23,45)(24,41)(26,44)(27,37)(33,36)(38,48)(39,42)(46,47)(49,50,51,54,56)(52,53,55,57,58), (1,5,23,4,20,45)(2,11,30,10,28,8)(3,17,6,16,29,21)(7,26,43,18,44,15)(9,12,31,32,34,19)(13,33,24,35,36,41)(14,22,46,40,25,47)(27,48,42,37,38,39), (1,6,4,21)(2,12,10,34)(3,18,16,7)(5,22,20,25)(8,31,30,19)(9,33,32,36)(11,17,28,29)(13,39,35,42)(14,41,40,24)(15,27,43,37)(23,47,45,46)(26,38,44,48)(49,52)(50,53)(51,55)(54,57)(56,58), (1,7)(2,13)(3,19)(4,18)(5,24)(6,25)(8,26)(9,32)(10,35)(12,37)(14,42)(15,36)(16,31)(17,38)(20,41)(21,22)(23,45)(27,34)(29,48)(30,44)(33,43)(39,40)(49,53)(50,55)(51,57)(52,56)(54,58) >;
 
Copy content gap:G := Group( (1,2,8,28,13)(3,14,31,12,9)(4,10,30,11,35)(5,15,7,26,24)(6,22,38,39,27)(16,40,19,34,32)(18,44,41,20,43)(21,25,48,42,37)(49,50,51,54,56)(52,53,55,57,58), (49,50,51,54,56)(52,53,55,57,58), (1,3,15,31,28,6,7,27,8,29)(2,9,24,39,26,12,36,14,13,38)(4,16,43,19,11,21,18,37,30,17)(5,22)(10,32,41,42,44,34,33,40,35,48)(20,25)(23,47)(45,46)(49,51,56,50,54)(52,53,55,57,58), (1,4)(2,10)(3,16)(5,20)(6,21)(7,18)(8,30)(9,32)(11,28)(12,34)(13,35)(14,40)(15,43)(17,29)(19,31)(22,25)(23,45)(24,41)(26,44)(27,37)(33,36)(38,48)(39,42)(46,47)(49,50,51,54,56)(52,53,55,57,58), (1,5,23,4,20,45)(2,11,30,10,28,8)(3,17,6,16,29,21)(7,26,43,18,44,15)(9,12,31,32,34,19)(13,33,24,35,36,41)(14,22,46,40,25,47)(27,48,42,37,38,39), (1,6,4,21)(2,12,10,34)(3,18,16,7)(5,22,20,25)(8,31,30,19)(9,33,32,36)(11,17,28,29)(13,39,35,42)(14,41,40,24)(15,27,43,37)(23,47,45,46)(26,38,44,48)(49,52)(50,53)(51,55)(54,57)(56,58), (1,7)(2,13)(3,19)(4,18)(5,24)(6,25)(8,26)(9,32)(10,35)(12,37)(14,42)(15,36)(16,31)(17,38)(20,41)(21,22)(23,45)(27,34)(29,48)(30,44)(33,43)(39,40)(49,53)(50,55)(51,57)(52,56)(54,58) );
 
Copy content sage:G = PermutationGroup(['(1,2,8,28,13)(3,14,31,12,9)(4,10,30,11,35)(5,15,7,26,24)(6,22,38,39,27)(16,40,19,34,32)(18,44,41,20,43)(21,25,48,42,37)(49,50,51,54,56)(52,53,55,57,58)', '(49,50,51,54,56)(52,53,55,57,58)', '(1,3,15,31,28,6,7,27,8,29)(2,9,24,39,26,12,36,14,13,38)(4,16,43,19,11,21,18,37,30,17)(5,22)(10,32,41,42,44,34,33,40,35,48)(20,25)(23,47)(45,46)(49,51,56,50,54)(52,53,55,57,58)', '(1,4)(2,10)(3,16)(5,20)(6,21)(7,18)(8,30)(9,32)(11,28)(12,34)(13,35)(14,40)(15,43)(17,29)(19,31)(22,25)(23,45)(24,41)(26,44)(27,37)(33,36)(38,48)(39,42)(46,47)(49,50,51,54,56)(52,53,55,57,58)', '(1,5,23,4,20,45)(2,11,30,10,28,8)(3,17,6,16,29,21)(7,26,43,18,44,15)(9,12,31,32,34,19)(13,33,24,35,36,41)(14,22,46,40,25,47)(27,48,42,37,38,39)', '(1,6,4,21)(2,12,10,34)(3,18,16,7)(5,22,20,25)(8,31,30,19)(9,33,32,36)(11,17,28,29)(13,39,35,42)(14,41,40,24)(15,27,43,37)(23,47,45,46)(26,38,44,48)(49,52)(50,53)(51,55)(54,57)(56,58)', '(1,7)(2,13)(3,19)(4,18)(5,24)(6,25)(8,26)(9,32)(10,35)(12,37)(14,42)(15,36)(16,31)(17,38)(20,41)(21,22)(23,45)(27,34)(29,48)(30,44)(33,43)(39,40)(49,53)(50,55)(51,57)(52,56)(54,58)'])
 

Group information

Description:$\GL(2,11).D_{10}$
Order: \(264000\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{3} \cdot 11 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_2\times C_4\times (C_2^2\times F_5).\PSL(2,11).C_2$, of order \(844800\)\(\medspace = 2^{10} \cdot 3 \cdot 5^{2} \cdot 11 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 4, $C_5$ x 2, $\PSL(2,11)$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$2$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and nonsolvable. Whether it is almost simple has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 5 6 8 10 11 12 15 20 22 24 30 40 44 55 60 110 120 220
Elements 1 1487 110 1440 6624 2530 2640 83888 120 2640 2640 36560 1560 5280 16720 19360 1200 2880 19360 13440 38720 4800 264000
Conjugacy classes   1 7 1 5 44 4 5 288 1 5 14 60 3 10 46 60 1 14 60 42 120 4 795
Divisions 1 7 1 5 13 4 4 79 1 4 4 17 3 4 12 10 1 4 10 11 10 1 206
Autjugacy classes 1 7 1 5 11 4 4 55 1 5 3 17 3 8 8 8 1 3 11 7 16 1 180

Copy content comment:Compute statistics about the characters of G
 
Copy content magma:// Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content gap:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content sage:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i character_degrees = [c[0] for c in G.character_table()] [[n, character_degrees.count(n)] for n in set(character_degrees)]
 
Copy content sage_gap:G.CharacterDegrees()
 

Dimension 1 2 4 8 10 11 12 20 22 24 40 44 48 80 88 96 160 320
Irr. complex chars.   40 40 0 0 100 40 80 250 40 205 0 0 0 0 0 0 0 0 795
Irr. rational chars. 8 0 12 8 12 8 0 4 0 9 19 12 24 19 8 47 10 6 206

Minimal presentations

Permutation degree:$58$
Transitive degree:$240$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 20 not computed 96
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Permutation group:Degree $58$ $\langle(1,2,8,28,13)(3,14,31,12,9)(4,10,30,11,35)(5,15,7,26,24)(6,22,38,39,27) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 58 | (1,2,8,28,13)(3,14,31,12,9)(4,10,30,11,35)(5,15,7,26,24)(6,22,38,39,27)(16,40,19,34,32)(18,44,41,20,43)(21,25,48,42,37)(49,50,51,54,56)(52,53,55,57,58), (49,50,51,54,56)(52,53,55,57,58), (1,3,15,31,28,6,7,27,8,29)(2,9,24,39,26,12,36,14,13,38)(4,16,43,19,11,21,18,37,30,17)(5,22)(10,32,41,42,44,34,33,40,35,48)(20,25)(23,47)(45,46)(49,51,56,50,54)(52,53,55,57,58), (1,4)(2,10)(3,16)(5,20)(6,21)(7,18)(8,30)(9,32)(11,28)(12,34)(13,35)(14,40)(15,43)(17,29)(19,31)(22,25)(23,45)(24,41)(26,44)(27,37)(33,36)(38,48)(39,42)(46,47)(49,50,51,54,56)(52,53,55,57,58), (1,5,23,4,20,45)(2,11,30,10,28,8)(3,17,6,16,29,21)(7,26,43,18,44,15)(9,12,31,32,34,19)(13,33,24,35,36,41)(14,22,46,40,25,47)(27,48,42,37,38,39), (1,6,4,21)(2,12,10,34)(3,18,16,7)(5,22,20,25)(8,31,30,19)(9,33,32,36)(11,17,28,29)(13,39,35,42)(14,41,40,24)(15,27,43,37)(23,47,45,46)(26,38,44,48)(49,52)(50,53)(51,55)(54,57)(56,58), (1,7)(2,13)(3,19)(4,18)(5,24)(6,25)(8,26)(9,32)(10,35)(12,37)(14,42)(15,36)(16,31)(17,38)(20,41)(21,22)(23,45)(27,34)(29,48)(30,44)(33,43)(39,40)(49,53)(50,55)(51,57)(52,56)(54,58) >;
 
Copy content gap:G := Group( (1,2,8,28,13)(3,14,31,12,9)(4,10,30,11,35)(5,15,7,26,24)(6,22,38,39,27)(16,40,19,34,32)(18,44,41,20,43)(21,25,48,42,37)(49,50,51,54,56)(52,53,55,57,58), (49,50,51,54,56)(52,53,55,57,58), (1,3,15,31,28,6,7,27,8,29)(2,9,24,39,26,12,36,14,13,38)(4,16,43,19,11,21,18,37,30,17)(5,22)(10,32,41,42,44,34,33,40,35,48)(20,25)(23,47)(45,46)(49,51,56,50,54)(52,53,55,57,58), (1,4)(2,10)(3,16)(5,20)(6,21)(7,18)(8,30)(9,32)(11,28)(12,34)(13,35)(14,40)(15,43)(17,29)(19,31)(22,25)(23,45)(24,41)(26,44)(27,37)(33,36)(38,48)(39,42)(46,47)(49,50,51,54,56)(52,53,55,57,58), (1,5,23,4,20,45)(2,11,30,10,28,8)(3,17,6,16,29,21)(7,26,43,18,44,15)(9,12,31,32,34,19)(13,33,24,35,36,41)(14,22,46,40,25,47)(27,48,42,37,38,39), (1,6,4,21)(2,12,10,34)(3,18,16,7)(5,22,20,25)(8,31,30,19)(9,33,32,36)(11,17,28,29)(13,39,35,42)(14,41,40,24)(15,27,43,37)(23,47,45,46)(26,38,44,48)(49,52)(50,53)(51,55)(54,57)(56,58), (1,7)(2,13)(3,19)(4,18)(5,24)(6,25)(8,26)(9,32)(10,35)(12,37)(14,42)(15,36)(16,31)(17,38)(20,41)(21,22)(23,45)(27,34)(29,48)(30,44)(33,43)(39,40)(49,53)(50,55)(51,57)(52,56)(54,58) );
 
Copy content sage:G = PermutationGroup(['(1,2,8,28,13)(3,14,31,12,9)(4,10,30,11,35)(5,15,7,26,24)(6,22,38,39,27)(16,40,19,34,32)(18,44,41,20,43)(21,25,48,42,37)(49,50,51,54,56)(52,53,55,57,58)', '(49,50,51,54,56)(52,53,55,57,58)', '(1,3,15,31,28,6,7,27,8,29)(2,9,24,39,26,12,36,14,13,38)(4,16,43,19,11,21,18,37,30,17)(5,22)(10,32,41,42,44,34,33,40,35,48)(20,25)(23,47)(45,46)(49,51,56,50,54)(52,53,55,57,58)', '(1,4)(2,10)(3,16)(5,20)(6,21)(7,18)(8,30)(9,32)(11,28)(12,34)(13,35)(14,40)(15,43)(17,29)(19,31)(22,25)(23,45)(24,41)(26,44)(27,37)(33,36)(38,48)(39,42)(46,47)(49,50,51,54,56)(52,53,55,57,58)', '(1,5,23,4,20,45)(2,11,30,10,28,8)(3,17,6,16,29,21)(7,26,43,18,44,15)(9,12,31,32,34,19)(13,33,24,35,36,41)(14,22,46,40,25,47)(27,48,42,37,38,39)', '(1,6,4,21)(2,12,10,34)(3,18,16,7)(5,22,20,25)(8,31,30,19)(9,33,32,36)(11,17,28,29)(13,39,35,42)(14,41,40,24)(15,27,43,37)(23,47,45,46)(26,38,44,48)(49,52)(50,53)(51,55)(54,57)(56,58)', '(1,7)(2,13)(3,19)(4,18)(5,24)(6,25)(8,26)(9,32)(10,35)(12,37)(14,42)(15,36)(16,31)(17,38)(20,41)(21,22)(23,45)(27,34)(29,48)(30,44)(33,43)(39,40)(49,53)(50,55)(51,57)(52,56)(54,58)'])
 
Matrix group:$\left\langle \left(\begin{array}{rrrr} 3 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{array}\right), \left(\begin{array}{rrrr} 4 & 0 & 7 & 2 \\ 0 & 4 & 4 & 7 \\ 3 & 7 & 7 & 0 \\ 3 & 3 & 0 & 7 \end{array}\right), \left(\begin{array}{rrrr} 10 & 3 & 8 & 2 \\ 10 & 0 & 2 & 8 \\ 7 & 2 & 9 & 8 \\ 8 & 7 & 1 & 10 \end{array}\right), \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 4 & 9 & 5 & 0 \\ 3 & 6 & 2 & 0 \\ 10 & 3 & 7 & 10 \end{array}\right), \left(\begin{array}{rrrr} 8 & 6 & 2 & 10 \\ 6 & 4 & 5 & 2 \\ 5 & 8 & 8 & 5 \\ 4 & 5 & 5 & 4 \end{array}\right), \left(\begin{array}{rrrr} 4 & 10 & 9 & 5 \\ 7 & 7 & 2 & 3 \\ 10 & 1 & 5 & 5 \\ 6 & 6 & 7 & 2 \end{array}\right), \left(\begin{array}{rrrr} 8 & 0 & 0 & 0 \\ 0 & 8 & 0 & 0 \\ 0 & 0 & 8 & 0 \\ 0 & 0 & 0 & 8 \end{array}\right) \right\rangle \subseteq \GL_{4}(\F_{11})$
Copy content comment:Define the group as a matrix group with coefficients in GLFp
 
Copy content magma:G := MatrixGroup< 4, GF(11) | [[3, 0, 0, 0, 0, 3, 0, 0, 0, 0, 3, 0, 0, 0, 0, 3], [4, 0, 7, 2, 0, 4, 4, 7, 3, 7, 7, 0, 3, 3, 0, 7], [10, 3, 8, 2, 10, 0, 2, 8, 7, 2, 9, 8, 8, 7, 1, 10], [1, 0, 0, 0, 4, 9, 5, 0, 3, 6, 2, 0, 10, 3, 7, 10], [8, 6, 2, 10, 6, 4, 5, 2, 5, 8, 8, 5, 4, 5, 5, 4], [4, 10, 9, 5, 7, 7, 2, 3, 10, 1, 5, 5, 6, 6, 7, 2], [8, 0, 0, 0, 0, 8, 0, 0, 0, 0, 8, 0, 0, 0, 0, 8]] >;
 
Copy content gap:G := Group([[[ Z(11)^8, 0*Z(11), 0*Z(11), 0*Z(11) ], [ 0*Z(11), Z(11)^8, 0*Z(11), 0*Z(11) ], [ 0*Z(11), 0*Z(11), Z(11)^8, 0*Z(11) ], [ 0*Z(11), 0*Z(11), 0*Z(11), Z(11)^8 ]], [[ Z(11)^2, 0*Z(11), Z(11)^7, Z(11) ], [ 0*Z(11), Z(11)^2, Z(11)^2, Z(11)^7 ], [ Z(11)^8, Z(11)^7, Z(11)^7, 0*Z(11) ], [ Z(11)^8, Z(11)^8, 0*Z(11), Z(11)^7 ]], [[ Z(11)^5, Z(11)^8, Z(11)^3, Z(11) ], [ Z(11)^5, 0*Z(11), Z(11), Z(11)^3 ], [ Z(11)^7, Z(11), Z(11)^6, Z(11)^3 ], [ Z(11)^3, Z(11)^7, Z(11)^0, Z(11)^5 ]], [[ Z(11)^0, 0*Z(11), 0*Z(11), 0*Z(11) ], [ Z(11)^2, Z(11)^6, Z(11)^4, 0*Z(11) ], [ Z(11)^8, Z(11)^9, Z(11), 0*Z(11) ], [ Z(11)^5, Z(11)^8, Z(11)^7, Z(11)^5 ]], [[ Z(11)^3, Z(11)^9, Z(11), Z(11)^5 ], [ Z(11)^9, Z(11)^2, Z(11)^4, Z(11) ], [ Z(11)^4, Z(11)^3, Z(11)^3, Z(11)^4 ], [ Z(11)^2, Z(11)^4, Z(11)^4, Z(11)^2 ]], [[ Z(11)^2, Z(11)^5, Z(11)^6, Z(11)^4 ], [ Z(11)^7, Z(11)^7, Z(11), Z(11)^8 ], [ Z(11)^5, Z(11)^0, Z(11)^4, Z(11)^4 ], [ Z(11)^9, Z(11)^9, Z(11)^7, Z(11) ]], [[ Z(11)^3, 0*Z(11), 0*Z(11), 0*Z(11) ], [ 0*Z(11), Z(11)^3, 0*Z(11), 0*Z(11) ], [ 0*Z(11), 0*Z(11), Z(11)^3, 0*Z(11) ], [ 0*Z(11), 0*Z(11), 0*Z(11), Z(11)^3 ]]]);
 
Copy content sage:MS = MatrixSpace(GF(11), 4, 4) G = MatrixGroup([MS([[3, 0, 0, 0], [0, 3, 0, 0], [0, 0, 3, 0], [0, 0, 0, 3]]), MS([[4, 0, 7, 2], [0, 4, 4, 7], [3, 7, 7, 0], [3, 3, 0, 7]]), MS([[10, 3, 8, 2], [10, 0, 2, 8], [7, 2, 9, 8], [8, 7, 1, 10]]), MS([[1, 0, 0, 0], [4, 9, 5, 0], [3, 6, 2, 0], [10, 3, 7, 10]]), MS([[8, 6, 2, 10], [6, 4, 5, 2], [5, 8, 8, 5], [4, 5, 5, 4]]), MS([[4, 10, 9, 5], [7, 7, 2, 3], [10, 1, 5, 5], [6, 6, 7, 2]]), MS([[8, 0, 0, 0], [0, 8, 0, 0], [0, 0, 8, 0], [0, 0, 0, 8]])])
 
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $\GL(2,11)$ . $D_{10}$ (2) $(D_5\times \GL(2,11))$ . $C_2$ $(C_2\times \GL(2,11))$ . $D_5$ $(\GL(2,11):C_{10})$ . $C_2$ all 53

Elements of the group are displayed as matrices in $\GL_{4}(\F_{11})$.

Homology

Abelianization: $C_{2}^{2} \times C_{10} \simeq C_{2}^{3} \times C_{5}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{3}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 60 normal subgroups, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_{10}$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $C_5\times \SL(2,11)$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_2$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $795 \times 795$ character table is not available for this group.

Rational character table

See the $206 \times 206$ rational character table (warning: may be slow to load).