Group information
| Description: | $C_2^3.C_2^5$ | |
| Order: | \(256\)\(\medspace = 2^{8} \) |
|
| Exponent: | \(4\)\(\medspace = 2^{2} \) |
|
| Automorphism group: | $C_2^{15}$, of order \(32768\)\(\medspace = 2^{15} \) |
|
| Composition factors: | $C_2$ x 8 |
|
| Nilpotency class: | $2$ |
|
| Derived length: | $2$ |
|
This group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.
Group statistics
| Order | 1 | 2 | 4 | |
|---|---|---|---|---|
| Elements | 1 | 71 | 184 | 256 |
| Conjugacy classes | 1 | 26 | 31 | 58 |
| Divisions | 1 | 26 | 23 | 50 |
| Autjugacy classes | 1 | 15 | 23 | 39 |
| Dimension | 1 | 2 | 4 | |
|---|---|---|---|---|
| Irr. complex chars. | 32 | 16 | 10 | 58 |
| Irr. rational chars. | 32 | 0 | 18 | 50 |
Minimal presentations
| Permutation degree: | $24$ |
| Transitive degree: | $32$ |
| Rank: | $5$ |
| Inequivalent generating 5-tuples: | $9999360$ |
Minimal degrees of faithful linear representations
| Over $\mathbb{C}$ | Over $\mathbb{R}$ | Over $\mathbb{Q}$ | |
|---|---|---|---|
| Irreducible | none | none | none |
| Arbitrary | 8 | 12 | 12 |
Constructions
| Presentation: |
${\langle a, b, c, d, e, f \mid a^{2}=b^{2}=c^{2}=d^{2}=e^{4}=f^{4}=[a,b]= \!\cdots\! \rangle}$
| |||||||
|
| ||||||||
| Permutation group: | Degree $24$
$\langle(1,2,6,10)(3,7,11,15)(4,9,5,8)(12,14,13,16)(17,18,20,21)(19,22,23,24), (1,3,5,13) \!\cdots\! \rangle$
| |||||||
|
| ||||||||
| Transitive group: | 32T3549 | more information | ||||||
| Direct product: | not isomorphic to a non-trivial direct product | |||||||
| Semidirect product: | $(C_2^4:Q_8)$ $\,\rtimes\,$ $C_2$ | $(C_2^4:Q_8)$ $\,\rtimes\,$ $C_2$ | $(C_2.D_4^2)$ $\,\rtimes\,$ $C_2$ | $(C_2^4.D_4)$ $\,\rtimes\,$ $C_2$ | all 45 | |||
| Trans. wreath product: | not isomorphic to a non-trivial transitive wreath product | |||||||
| Non-split product: | $C_2^6$ . $C_2^2$ | $C_2^5$ . $C_2^3$ (7) | $C_2^4$ . $C_2^4$ (8) | $C_2^3$ . $C_2^5$ | all 23 | |||
Elements of the group are displayed as words in the presentation generators from the presentation above.
Homology
| Abelianization: | $C_{2}^{5} $ |
|
| Schur multiplier: | $C_{2}^{7}$ |
|
| Commutator length: | $1$ |
|
Subgroups
There are 4583 subgroups in 1642 conjugacy classes, 427 normal (389 characteristic).
Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.
Special subgroups
| Center: | $Z \simeq$ $C_2^3$ | $G/Z \simeq$ $C_2^5$ |
|
| Commutator: | $G' \simeq$ $C_2^3$ | $G/G' \simeq$ $C_2^5$ |
|
| Frattini: | $\Phi \simeq$ $C_2^3$ | $G/\Phi \simeq$ $C_2^5$ |
|
| Fitting: | $\operatorname{Fit} \simeq$ $C_2^3.C_2^5$ | $G/\operatorname{Fit} \simeq$ $C_1$ |
|
| Radical: | $R \simeq$ $C_2^3.C_2^5$ | $G/R \simeq$ $C_1$ |
|
| Socle: | $\operatorname{soc} \simeq$ $C_2^3$ | $G/\operatorname{soc} \simeq$ $C_2^5$ |
|
| 2-Sylow subgroup: | $P_{ 2 } \simeq$ $C_2^3.C_2^5$ |
Subgroup diagram and profile
For the default diagram, subgroups are sorted vertically by the number of prime divisors (counted with multiplicity) in their orders.
To see subgroups sorted vertically by order instead, check this box.
To see subgroups sorted vertically by order instead, check this box.
Subgroup information
Click on a subgroup in the diagram to see information about it.
|
Series
| Derived series | $C_2^3.C_2^5$ | $\rhd$ | $C_2^3$ | $\rhd$ | $C_1$ |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Chief series | $C_2^3.C_2^5$ | $\rhd$ | $C_2^3.C_2^4$ | $\rhd$ | $C_4^2:C_2^2$ | $\rhd$ | $C_2\times C_4^2$ | $\rhd$ | $C_2^2\times C_4$ | $\rhd$ | $C_2^3$ | $\rhd$ | $C_2^2$ | $\rhd$ | $C_2$ | $\rhd$ | $C_1$ |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Lower central series | $C_2^3.C_2^5$ | $\rhd$ | $C_2^3$ | $\rhd$ | $C_1$ |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Upper central series | $C_1$ | $\lhd$ | $C_2^3$ | $\lhd$ | $C_2^3.C_2^5$ |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Character theory
Complex character table
See the $58 \times 58$ character table. Alternatively, you may search for characters of this group with desired properties.
Rational character table
See the $50 \times 50$ rational character table.